toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Davies, H.M.S. openurl 
  Title The timing and distribution of strains around the surface of the midshaft of the third metacarpal bone during treadmill exercise in one Thoroughbred racehorse Type Journal Article
  Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J  
  Volume 83 Issue 3 Pages 157-162  
  Keywords Animals; Exercise Test/veterinary; Female; Gait/*physiology; Horses/*physiology; Metacarpus/*physiology; Motor Activity/physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract OBJECTIVE: To confirm that the midshaft dorsal cortex of the third metacarpal bone experienced higher compressive strains during fast exercise than the medial or lateral cortices, and that the strain peak occurred earlier in the hoof-down phase of the stride on the dorsal cortex than the medial or lateral cortices. DESIGN: Observations of a single horse. PROCEDURE: Strains were collected from a single, sound, 3-year-old Thoroughbred mare during treadmill exercise from rosette strain gauges implanted onto the medial, lateral and dorsal surfaces of the midshaft of the right cannon bone, simultaneously with data from a hoof switch that showed when the hoof was in the stance phase. RESULTS: Peak compressive strains on the dorsal surface of the third metacarpal bone were proportional to exercise speed and occurred at about 30% of stance. Peak compressive strains on the medial surface of the non-lead limb reached a maximum at a speed around 10 m/s and occurred at mid-stance. Peak compressive strains on the lateral surface varied in timing and size between strides at all exercise speeds, but remained less than -2000 microstrains. CONCLUSIONS: The timing of peak compressive strains on the dorsal cortex suggests a relationship to deceleration of the limb following hoof impact, so the main determinants of their size would be exercise speed and turning (as shown in previous experiments). This experiment confirms data from other laboratories that were published but not discussed, that peak compressive strains on the medial surface occur at mid-stance. This suggests that they are related to the support of body weight. The strains on the lateral cortex occurred at variable times so may be associated with the maintenance of balance as well as the support of body weight. Understanding the loading of the third metacarpal bone will help to determine causes of damage to it and ways in which the bone might be conditioned to prevent such damage.  
  Address Department of Veterinary Science, University of Melbourne, Parkville, Victoria 3010. h.davies@unimelb.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0005-0423 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15825628 Approved no  
  Call Number Serial 1891  
Permanent link to this record
 

 
Author Powers, P.; Harrison, A. openurl 
  Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
  Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech  
  Volume 1 Issue 2 Pages 135-146  
  Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology  
  Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.  
  Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-3141 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14658371 Approved no  
  Call Number Serial 1904  
Permanent link to this record
 

 
Author Summerley, H.L.; Thomason, J.J.; Bignell, W.W. openurl 
  Title Effect of rider and riding style on deformation of the front hoof wall in warmblood horses Type Journal Article
  Year 1998 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 26 Pages 81-85  
  Keywords Animals; Female; Gait/*physiology; Hoof and Claw/*physiology; Horses/*physiology; Male; Videotape Recording; Weight-Bearing  
  Abstract A rider modifies the weight distribution and dynamic balance of the horse. But what effect does a rider have on the mechanical behaviour of the hoof during each stance phase? Does riding style have any effect on this behaviour? We attempted to answer these questions using strains recorded from 5 rosette strain gauges glued to the surface of the front hooves of 4 Warmblood horses. Comparisons were made between strains with and without a rider, and when the rider was sitting, rising at a trot, or in a forward seated position. The change in strains from trot to lead or nonlead at a canter, and the effect of turning were also studied. Changing lead at a canter had as least as much effect on strain magnitudes as did turning; strains were up to 43% higher for the nonlead foot, but with little redistribution. Perhaps surprisingly, strains were significantly lower on the quarters by up to 30% with a rider than without, with a 10% increase or decrease at the toe, depending on the individual. Riding style changed strain magnitudes by up to 20% and also caused strain redistribution: strains were higher medially for sitting, and laterally for forward seat, with strains for a rising trot being more evenly distributed and intermediate in magnitude. Studying the range of, and causes of variation in hoof wall strain gives baseline data aimed, in the long term, at providing a biomechanical definition of hoof balance.  
  Address Department of Biomedical Sciences, University of Guelph, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9932097 Approved no  
  Call Number refbase @ user @ Serial 1934  
Permanent link to this record
 

 
Author McGuigan, M.P.; Wilson, A.M. openurl 
  Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
  Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 206 Issue Pt 8 Pages 1325-1336  
  Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running  
  Abstract A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.  
  Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12624168 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3655  
Permanent link to this record
 

 
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S. openurl 
  Title Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 707-711  
  Keywords Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing  
  Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.  
  Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656501 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3656  
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
 

 
Author Licka, T.; Kapaun, M.; Peham, C. openurl 
  Title Influence of rider on lameness in trotting horses Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 734-736  
  Keywords Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology  
  Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656506 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3715  
Permanent link to this record
 

 
Author Johnston, C.; Holm, K.R.; Erichsen, C.; Eksell, P.; Drevemo, S. openurl 
  Title Kinematic evaluation of the back in fully functioning riding horses Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 6 Pages 495-498  
  Keywords Age Factors; Animals; Back/*physiology; Back Pain/diagnosis/veterinary; Biomechanics; Exercise Test/*veterinary; Female; Gait/*physiology; Horse Diseases/diagnosis; Horses/*physiology; Male; Movement/physiology; Sex Factors  
  Abstract REASONS FOR PERFORMING STUDY: Clinical history and examination are important features in diagnosis of equine back dysfunction. However, interpretation is subjective and therefore may vary substantially. OBJECTIVES: To establish a clinical tool to objectively evaluate the function of the equine back, in the form of a database on the kinematics of the back at the walk and trot in fully functioning riding horses. METHODS: Thirty-three fully functioning riding horses walked and trotted on a treadmill. Morphometrics and kinematics were tested for correlations to age, height, weight and stride length, and differences between gender (geldings and mares) and use (dressage and showjumping). RESULTS: A database for range of movement and symmetry of movement for extension and flexion, lateral bending, lateral excursion and axial rotation was presented. Symmetry values were very high for all variables. Significant differences were observed in use and gender. Age was negatively correlated to extension and flexion of the thoracolumbar junction. CONCLUSIONS: Interrelationships between use, gender and age to conformation and movement were established. POTENTIAL RELEVANCE: The database provides a basis for objective reference for diagnosis, therapy and rehabilitation of clinical cases of back dysfunction.  
  Address Departments of Anatomy and Histology, 75007 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15460073 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3716  
Permanent link to this record
 

 
Author Dyson, S.; Murray, R. openurl 
  Title Pain associated with the sacroiliac joint region: a clinical study of 74 horses Type Journal Article
  Year 2003 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 35 Issue 3 Pages 240-245  
  Keywords Age Factors; Analgesia/veterinary; Anesthetics, Local/pharmacology; Animals; Body Height; Body Weight; Breeding; Female; Forelimb; Gait; Hindlimb; Horse Diseases/*diagnosis/radionuclide imaging; Horses; Lameness, Animal/*physiopathology; Lumbar Vertebrae/physiopathology; Male; Pain/diagnosis/drug therapy/radionuclide imaging/*veterinary; Sacroiliac Joint/*physiopathology; Sacrum/physiopathology  
  Abstract REASONS FOR PERFORMING STUDY: There has been no large study of horses with suspected sacroiliac (SI) joint region pain in which the clinical diagnosis has been supported by either abnormal radiopharmaceutical activity in the SI joint region or by periarticular infiltration of local anaesthetic solution. OBJECTIVES: To describe the clinical features of horses with SI joint region pain, to document the age, breed, sex, discipline, size and conformation of affected horses and to compare these with the author's (SD) normal case population and to document the results of infiltration of local anaesthetic solution around the SI joint region. METHODS: Horses were selected for inclusion in the study based upon the exclusion of other causes of lameness or poor performance, together with clinical signs suggestive of SI joint pain and abnormal radiopharmaceutical activity in the SI joint region and/or a positive response to periarticular infiltration of local anaesthetic solution. RESULTS: Sacroiliac joint region disease was identified in 74 horses between November 1997 and March 2002. Dressage and showjumping horses appeared to be at particular risk (P < 0.001). Affected horses were generally slightly older than the normal clinic population (P < 0.0001), taller at the withers (P < 0.0001) and of greater bodyweight (P < 0.01). There was a significant effect of breed (P < 0.001), with a substantially higher proportion of Warmblood horses (51%) in the SI pain group compared to the normal clinic population (29%). There was no correlation between conformation and the presence of SI joint region pain. The tubera sacrale appeared grossly symmetrical in most (95%) horses. Poor development of the epaxial muscles in the thoracolumbar region and asymmetry of the hindquarter musculature were common. Twenty-six horses (35%) showed restricted flexibility of the thoracolumbar region and 10 (16%) had an exaggerated response to pressure applied over the tubera sacrale. Fourteen horses (19%) were reluctant to stand on one hindlimb for prolonged periods. The majority of horses (75%) had a straight hindlimb flight and only 18% moved closely behind or plaited. In all horses restricted hindlimb impulsion was the predominant feature; invariably this was most obvious when the horse was ridden. Stiffness, unwillingness to work on the bit and poor quality canter were common. Sacroiliac joint region pain was seen alone (47%), or in conjunction with thoracolumbar pain (16%), hindlimb lameness (20%), forelimb lameness (7%) or a combination of problems (10%). Seventy-three horses (99%) had abnormalities of the SI joint region identified using nuclear scintigraphy. Infiltration of local anaesthetic solution around the SI joint region produced profound improvement in gait in all 34 horses in which it was performed. CONCLUSIONS AND POTENTIAL RELEVANCE: Careful clinical examination combined with scintigraphic evaluation of the SI joint region and local analgesia can enable a more definitive diagnosis of SI joint region pain than has previously been possible.  
  Address Centre for Equine Studies, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12755425 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3723  
Permanent link to this record
 

 
Author Barrey, E.; Desliens, F.; Poirel, D.; Biau, S.; Lemaire, S.; Rivero, J.L.L.; Langlois, B. openurl 
  Title Early evaluation of dressage ability in different breeds Type Journal Article
  Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 34 Pages 319-324  
  Keywords Animals; Biomechanics; Breeding; Discriminant Analysis; Female; Forelimb; Gait/genetics/*physiology; Hindlimb; Horses/anatomy & histology/*genetics/*physiology; Male; Photography/veterinary; *Physical Conditioning, Animal; Sports  
  Abstract Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.  
  Address INRA, Station de Genetique Quantitative et Appliquee, Groupe Cheval, Jouy-en-Josas, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12405708 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3726  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print