toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skedros, J.G.; Dayton, M.R.; Sybrowsky, C.L.; Bloebaum, R.D.; Bachus, K.N. doi  openurl
  Title The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone Type Journal Article
  Year 2006 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 209 Issue Pt 15 Pages 3025-3042  
  Keywords Animals; Biomechanics; Bone and Bones/*physiology; Collagen/*physiology; Forelimb; Horses/*physiology  
  Abstract This study examined relative influences of predominant collagen fiber orientation (CFO), mineralization (% ash), and other microstructural characteristics on the mechanical properties of equine cortical bone. Using strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension), the relative mechanical importance of CFO and other material characteristics were examined in equine third metacarpals (MC3s). This model was chosen since it had a consistent non-uniform strain distribution estimated by finite element analysis (FEA) near mid-diaphysis of a thoroughbred horse, net tension in the dorsal/lateral cortices and net compression in the palmar/medial cortices. Bone specimens from regions habitually loaded in tension or compression were: (1) tested to failure in both axial compression and tension in order to contrast S-M-S vs non-S-M-S behavior, and (2) analyzed for CFO, % ash, porosity, fractional area of secondary osteonal bone, osteon cross-sectional area, and population densities of secondary osteons and osteocyte lacunae. Multivariate multiple regression analyses revealed that in S-M-S compression testing, CFO most strongly influenced total energy (pre-yield elastic energy plus post-yield plastic energy); in S-M-S tension testing CFO most strongly influenced post-yield energy and total energy. CFO was less important in explaining S-M-S elastic modulus, and yield and ultimate stress. Therefore, in S-M-S loading CFO appears to be important in influencing energy absorption, whereas the other characteristics have a more dominant influence in elastic modulus, pre-yield behavior and strength. These data generally support the hypothesis that differentially affecting S-M-S energy absorption may be an important consequence of regional histocompositional heterogeneity in the equine MC3. Data inconsistent with the hypothesis, including the lack of highly longitudinal collagen in the dorsal-lateral ;tension' region, paradoxical histologic organization in some locations, and lack of significantly improved S-M-S properties in some locations, might reflect the absence of a similar habitual strain distribution in all bones. An alternative strain distribution based on in vivo strain measurements, without FEA, on non-Thoroughbreds showing net compression along the dorsal-palmar axis might be more characteristic of the habitual loading of some of the bones that we examined. In turn, some inconsistencies might also reflect the complex torsion/bending loading regime that the MC3 sustains when the animal undergoes a variety of gaits and activities, which may be representative of only a portion of our animals, again reflecting the possibility that not all of the bones examined had similar habitual loading histories.  
  Address Utah Bone and Joint Center, 5323 S. Woodrow Street #202, Salt Lake City, UT 84107, USA. jskedros@utahboneandjoint.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16857886 Approved (up) no  
  Call Number Serial 1868  
Permanent link to this record
 

 
Author Bobbert, M.F.; Santamaria, S. doi  openurl
  Title Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping Type Journal Article
  Year 2005 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 208 Issue 2 Pages 249-260  
  Keywords Animals; Biomechanics; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Time Factors  
  Abstract The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).  
  Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands. MFBobbert@fbw.vu.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15634844 Approved (up) no  
  Call Number Serial 1895  
Permanent link to this record
 

 
Author Powers, P.; Harrison, A. openurl 
  Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
  Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech  
  Volume 1 Issue 2 Pages 135-146  
  Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology  
  Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.  
  Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-3141 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14658371 Approved (up) no  
  Call Number Serial 1904  
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J. doi  openurl
  Title Horses damp the spring in their step Type Journal Article
  Year 2001 Publication Nature Abbreviated Journal Nature  
  Volume 414 Issue 6866 Pages 895-899  
  Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration  
  Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.  
  Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11780059 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 2300  
Permanent link to this record
 

 
Author Real, L.A. openurl 
  Title Animal choice behavior and the evolution of cognitive architecture Type Journal Article
  Year 1991 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 253 Issue 5023 Pages 980-986  
  Keywords Animals; Bees/genetics/*physiology; Biomechanics; *Choice Behavior; *Cognition; *Evolution; Mathematics; Models, Genetic; Probability  
  Abstract Animals process sensory information according to specific computational rules and, subsequently, form representations of their environments that form the basis for decisions and choices. The specific computational rules used by organisms will often be evolutionarily adaptive by generating higher probabilities of survival, reproduction, and resource acquisition. Experiments with enclosed colonies of bumblebees constrained to foraging on artificial flowers suggest that the bumblebee's cognitive architecture is designed to efficiently exploit floral resources from spatially structured environments given limits on memory and the neuronal processing of information. A non-linear relationship between the biomechanics of nectar extraction and rates of net energetic gain by individual bees may account for sensitivities to both the arithmetic mean and variance in reward distributions in flowers. Heuristic rules that lead to efficient resource exploitation may also lead to subjective misperception of likelihoods. Subjective probability formation may then be viewed as a problem in pattern recognition subject to specific sampling schemes and memory constraints.  
  Address Department of Biology, University of North Carolina, Chapel Hill 27599-3280  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1887231 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 2846  
Permanent link to this record
 

 
Author Dutto, D.J.; Hoyt, D.F.; Clayton, H.M.; Cogger, E.A.; Wickler, S.J. openurl 
  Title Moments and power generated by the horse (Equus caballus) hind limb during jumping Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue Pt 4 Pages 667-674  
  Keywords Animals; Biomechanics; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology  
  Abstract The ability to jump over an obstacle depends upon the generation of work across the joints of the propelling limb(s). The total work generated by one hind limb of a horse and the contribution to the total work by four joints of the hind limb were determined for a jump. It was hypothesized that the hip and ankle joints would have extensor moments performing positive work, while the knee would have a flexor moment and perform negative work during the jump. Ground reaction forces and sagittal plane kinematics were simultaneously recorded during each jumping trial. Joint moment, power and work were determined for the metatarsophalangeal (MP), tarsal (ankle), tibiofemoral (knee) and coxofemoral (hip) joints. The hip, knee and ankle all flexed and then extended and the MP extended and then flexed during ground contact. Consistent with our hypothesis, large extensor moments were observed at the hip and ankle joints and large flexor moments at the knee and MP joints throughout ground contact of the hind limb. Peak moments tended to occur earlier in stance in the proximal joints but peak power generation of the hind limb joints occurred at similar times except for the MP joint, with the hip and ankle peaking first followed by the MP joint. During the first portion of ground contact (approximately 40%), the net result of the joint powers was the absorption of power. During the remainder of the contact period, the hind limb generated power. This pattern of power absorption followed by power generation paralleled the power profiles of the hip, ankle and MP joints. The total work performed by one hind limb was 0.71 J kg(-1). Surprisingly, the knee produced 85% of the work (0.60 J kg(-1)) done by the hind limb, and the positive work performed by the knee occurred during the first 40% of the take-off. There is little net work generated by the other three joints over the entire take-off. Velocity of the tuber coxae (a landmark on the pelvis of the animal) was negative (downward) during the first 40% of stance, which perhaps reflects the negative work performed to decrease the potential energy during the first 40% of contact. During the final 60% of contact, the hip, ankle and MP joints generate positive work, which is reflected in the increase of the animal's potential energy.  
  Address Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA 91768, USA. ddutto@csupomona.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14718509 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 3654  
Permanent link to this record
 

 
Author McGuigan, M.P.; Wilson, A.M. openurl 
  Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
  Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 206 Issue Pt 8 Pages 1325-1336  
  Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running  
  Abstract A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.  
  Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12624168 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 3655  
Permanent link to this record
 

 
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S. openurl 
  Title Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 707-711  
  Keywords Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing  
  Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.  
  Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656501 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 3656  
Permanent link to this record
 

 
Author Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S. openurl 
  Title The influence of head and neck position on kinematics of the back in riding horses at the walk and trot Type Journal Article
  Year 2005 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 37 Issue 1 Pages 7-11  
  Keywords Acceleration; Animals; Back/*physiology; Biomechanics; Exercise Test/veterinary; Female; Gait/*physiology; Head/*physiology; Horses/*physiology; Male; Movement/physiology; Neck/*physiology; Walking/physiology  
  Abstract REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.  
  Address Department of Anatomy, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15651727 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 3657  
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print