toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
 

 
Author Bobbert, M.F.; Alvarez, C.B.G.; van Weeren, P.R.; Roepstorff, L.; Weishaupt, M.A. doi  openurl
  Title Validation of vertical ground reaction forces on individual limbs calculated from kinematics of horse locomotion Type Journal Article
  Year 2007 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 210 Issue Pt 11 Pages 1885-1896  
  Keywords  
  Abstract The purpose of this study was to determine whether individual limb forces could be calculated accurately from kinematics of trotting and walking horses. We collected kinematic data and measured vertical ground reaction forces on the individual limbs of seven Warmblood dressage horses, trotting at 3.4 m s(-1) and walking at 1.6 m s(-1) on a treadmill. First, using a segmental model, we calculated from kinematics the total ground reaction force vector and its moment arm relative to each of the hoofs. Second, for phases in which the body was supported by only two limbs, we calculated the individual reaction forces on these limbs. Third, we assumed that the distal limbs operated as linear springs, and determined their force-length relationships using calculated individual limb forces at trot. Finally, we calculated individual limb force-time histories from distal limb lengths. A good correspondence was obtained between calculated and measured individual limb forces. At trot, the average peak vertical reaction force on the forelimb was calculated to be 11.5+/-0.9 N kg(-1) and measured to be 11.7+/-0.9 N kg(-1), and for the hindlimb these values were 9.8+/-0.7 N kg(-1) and 10.0+/-0.6 N kg(-1), respectively. At walk, the average peak vertical reaction force on the forelimb was calculated to be 6.9+/-0.5 N kg(-1) and measured to be 7.1+/-0.3 N kg(-1), and for the hindlimb these values were 4.8+/-0.5 N kg(-1) and 4.7+/-0.3 N kg(-1), respectively. It was concluded that the proposed method of calculating individual limb reaction forces is sufficiently accurate to detect changes in loading reported in the literature for mild to moderate lameness at trot.  
  Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17515415 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3700  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print