toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fenner, K.; Freire, R.; McLean, A.; McGreevy, P. url  doi
openurl 
  Title Behavioral, demographic and management influences on equine responses to negative reinforcement Type Journal Article
  Year 2018 Publication Journal of Veterinary Behavior Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Learning; horse management; training; temperament; negative reinforcement  
  Abstract Understanding the factors that influence horse learning is critical to ensure horse welfare and rider safety. In this study, data were obtained from horses (n=96) training to step backwards through a corridor in response to bit pressure. Following training, learning ability was determined by the latency to step backwards through the corridor when handled on the left and right reins. Additionally, horse owners were questioned about each horse's management, training, behavior and signalment (such as horse breed, age and sex). Factors from these four broad domains were examined using a multiple logistic regression (MLR) model, following an Information Theoretic approach, for associations between horses' behavioral attributes and their ability to learn the task. The MLR also included estimates of the rider's ability and experience as well as owner's perceptions of their horse's trainability and temperament. Results revealed several variables including explanatory variables that correlated significantly with rate of learning. Horses were faster at backing, a behavioral trait, when handled on the right (t = 3.65, df = 94, P < 0.001) than the left side. Thoroughbred horses were slower at completing the tests than other breeds of horses when handled on the left side (LM, F1,48=4.5, P=0.04) and right side (LM, F1,45=6.0, P=0.02). Those in regular work, a training factor, did not learn faster than their unworked counterparts on the right rein but completed the task faster on the left rein (F1,44=5.47, P=0.02). This may reflect differences in laterality and habituation effects. In contrast, more anxious horses were faster at completing the test when handled from the right (Spearman, r=-0.22, P=0.04). It is possible that these horses have an increased arousal level when interacting with handlers, resulting in more engagement with the lesson, accounting for the improved performance results. The findings of this study will help clarify how horse behavior, training and management may influence learning and how their application may optimize learning outcomes. Future equine behavior assessment and research questionnaires should include items that assess these qualities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-7878 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6400  
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. url  doi
openurl 
  Title Behavioural lateralization in sheep (Ovis aries) Type Journal Article
  Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 184 Issue 1 Pages 72-80  
  Keywords (down) Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization  
  Abstract This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6701  
Permanent link to this record
 

 
Author Schwarz, S.; Marr, I.; Farmer, K.; Graf, K.; Stefanski, V.; Krueger, K. doi  openurl
  Title Does Carrying a Rider Change Motor and Sensory Laterality in Horses? Type Journal Article
  Year 2022 Publication Animals Abbreviated Journal Animals  
  Volume 12 Issue 8 Pages 992  
  Keywords (down) laterality; horse; rider; sensory laterality; motor laterality; novel object; side preference  
  Abstract Laterality in horses has been studied in recent decades. Although most horses are kept for riding purposes, there has been almost no research on how laterality may be affected by carrying a rider. In this study, 23 horses were tested for lateral preferences, both with and without a rider, in three different experiments. The rider gave minimal aids and rode on a long rein to allow the horse free choice. Firstly, motor laterality was assessed by observing forelimb preference when stepping over a pole. Secondly, sensory laterality was assessed by observing perceptual side preferences when the horse was confronted with (a) an unfamiliar person or (b) a novel object. After applying a generalised linear model, this preliminary study found that a rider increased the strength of motor laterality (p = 0.01) but did not affect sensory laterality (p = 0.8). This suggests that carrying a rider who is as passive as possible does not have an adverse effect on a horse&#65533;s stress levels and mental state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6667  
Permanent link to this record
 

 
Author Giljov, A.; Karenina, K. url  doi
openurl 
  Title Differential roles of the right and left brain hemispheres in the social interactions of a free-ranging ungulate Type Journal Article
  Year 2019 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 168 Issue Pages 103959  
  Keywords (down) Laterality; Hemispheric specialization; Brain asymmetry; Eye preference; Ungulate; Bovid  
  Abstract Despite the abundant empirical evidence on lateralized social behaviours, a clear understanding of the relative roles of two brain hemispheres in social processing is still lacking. This study investigated visual lateralization in social interactions of free-ranging European bison (Bison bonasus). The bison were more likely to display aggressive responses (such as fight and side hit), when they viewed the conspecific with the right visual field, implicating the left brain hemisphere. In contrast, the responses associated with positive social interactions (female-to-calf bonding, calf-to-female approach, suckling) or aggression inhibition (fight termination) occurred more likely when the left visual field was in use, indicating the right hemisphere advantage. The results do not support either assumptions of right-hemisphere dominance for control of various social functions or hypotheses about simple positive (approach) versus negative (withdrawal) distinction between the hemispheric roles. The discrepancy between the studies suggests that in animals, the relative roles of the hemispheres in social processing may be determined by a fine balance of emotions and motivations associated with the particular social reaction difficult to categorize for a human investigator. Our findings highlight the involvement of both brain hemispheres in the control of social behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6587  
Permanent link to this record
 

 
Author Stomp, M.; d'Ingeo, S.; Henry, S.; Cousillas, H.; Hausberger, M. url  doi
openurl 
  Title Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model Type Journal Article
  Year 2021 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 236 Issue Pages 105271  
  Keywords (down) Laterality; Electroencephalography; Theta wave; Welfare; Horses  
  Abstract Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6628  
Permanent link to this record
 

 
Author Stomp, M.; d'Ingeo, S.; Henry, S.; Cousillas, H.; Hausberger, M. url  doi
openurl 
  Title Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model Type Journal Article
  Year 2021 Publication Applied Animal Behaviour Science Abbreviated Journal  
  Volume 236 Issue Pages 105271  
  Keywords (down) Laterality; Electroencephalography; Theta wave; Welfare; Horses  
  Abstract Assessing the animal welfare state is a challenge given the subjective individual cognitive and emotional processing involved. Electroencephalography (EEG) spectrum analysis has proved an ecologically valid recording situation to assess the link between brain processes and affective or cognitive states in humans: a higher slow wave/fast wave ratio has been associated with a positive internal state. In particular, a high production of theta power (3-8 Hz) has been related to positive emotions. On the other hand, it has been hypothesized that a left hemisphere (LH) dominance may be associated with a better welfare state. Here, we test the hypothesis that individual differences in the resting-state quantitative EEG power spectrum of adult horses (N = 18) and its lateralization pattern may reflect individual subjective perception of their conditions of life and welfare state. The results show clear individual differences in the proportions of the different waves and their inter-hemispheric distribution. Three different EEG power spectrum profiles were highlighted, from a bilateral predominance of theta waves in horses in a more positive welfare state to a bilateral predominance of beta waves in horses with clear expressions of compromised welfare. Interestingly, particular correlations were found between wave power activity and welfare parameters. We found a negative correlation between the number of stereotypic behaviours per hour and the median proportion of theta waves in the left hemisphere. and between the overall state (total chronic stress score) of welfare and gamma production in the right hemisphere (RH). These findings go along the hypothesis of a particular involvement of the left hemisphere for positive processing and of the right hemisphere for negative processing. However, the pattern of laterality did not appear as the most important feature here as both extreme clusters in terms of welfare showed bilateral predominance of one wave type. It is possible that hemispheric specialization makes more sense during acute emotion-inducing conditions rather than in this resting-state context (i.e. in absence of any high emotion-inducing stimulation), although the opposition gamma versus theta waves between both hemispheres in the horses with an intermediate welfare state is noticeable and intriguing. It seems that bilateral but also LH theta activity is a promising neurophysiological marker of good welfare in horses, while a bilateral or RH high production of gamma waves should alert about potential welfare alterations. Quantitative resting-state EEG power spectrum appears as a highly promising tool for exploring the brain processes involved in the subjective perception of chronic welfare, as a useful complementary tool for welfare assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6629  
Permanent link to this record
 

 
Author Dyson, S.; Berger, J.; Ellis, A.D.; Mullard, J. url  doi
openurl 
  Title Development of an ethogram for a pain scoring system in ridden horses and its application to determine the presence of musculoskeletal pain Type Journal Article
  Year 2018 Publication Journal of Veterinary Behavior Abbreviated Journal  
  Volume 23 Issue Pages 47-57  
  Keywords (down) Lameness; Equine behavior; Pain grading; Headshaking; Bucking; Rearing  
  Abstract There is evidence that more than 47% of the sports horse population in normal work may be lame, but the lameness is not recognized by owners or trainers. An alternative means of detecting pain may be recognition of behavioral changes in ridden horses. It has been demonstrated that there are differences in facial expressions in nonlame and lame horses. The purpose of this study was to develop a whole horse ethogram for ridden horses and to determine whether it could be applied repeatedly by 1 observer (repeatability study, 9 horses) and if, by application of a related pain behavior score, lame horses (n = 24) and nonlame horses (n = 13) could be differentiated. It was hypothesized that there would be some overlap in pain behavior scores among nonlame and lame horses; and that overall, nonlame horses would have a lower pain behavior score than lame horses. The ethogram was developed with 117 behavioral markers, and the horses were graded twice in random order by a trained specialist using video footage. Overall, there was a good correlation between the 2 assessments (P < 0.001; R2 = 0.91). Behavioral markers that were not consistent across the 2 assessments were omitted, reducing the ethogram to 70 markers. The modified ethogram was applied to video recordings of the nonlame horses and lame horses (ethogram evaluation). There was a strong correlation between 20 behavioral markers and the presence of lameness. The ethogram was subsequently simplified to 24 behavioral markers, by the amalgamation of similar behaviors which scored similarly and by omission of markers which showed unreliable results in relation to lameness. Following this, the maximum individual occurrence score for lame horses was 14 (out of 24 possible markers), with a median and mean score of 9 (±2 standard deviation) compared with a maximum score of 6 for nonlame horses, with a median and mean score of 2 (±1.4). For lame horses, the following behaviors occurred significantly more (P < 0.05, chi-square): ears back, mouth opening, tongue out, change in eye posture and expression, going above the bit, head tossing, tilting the head, unwillingness to go, crookedness, hurrying, changing gait spontaneously, poor quality canter, resisting, and stumbling and toe dragging. Recognition of these features as potential indicators of musculoskeletal pain may enable earlier recognition of lameness and avoidance of punishment-based training. Further research is necessary to verify this new ethogram for assessment of pain in ridden horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-7878 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6706  
Permanent link to this record
 

 
Author Sueur, C.; Jacobs, A.; Amblard, F.; Petit, O.; King, A.J. url  doi
openurl 
  Title How can social network analysis improve the study of primate behavior? Type Journal Article
  Year 2010 Publication American Journal of Primatology Abbreviated Journal Am. J. Primatol.  
  Volume 73 Issue 8 Pages 703-719  
  Keywords (down) interaction; association; social system; social structure; methodology; behavioral sampling  
  Abstract Abstract When living in a group, individuals have to make trade-offs, and compromise, in order to balance the advantages and disadvantages of group life. Strategies that enable individuals to achieve this typically affect inter-individual interactions resulting in nonrandom associations. Studying the patterns of this assortativity using social network analyses can allow us to explore how individual behavior influences what happens at the group, or population level. Understanding the consequences of these interactions at multiple scales may allow us to better understand the fitness implications for individuals. Social network analyses offer the tools to achieve this. This special issue aims to highlight the benefits of social network analysis for the study of primate behaviour, assessing it's suitability for analyzing individual social characteristics as well as group/population patterns. In this introduction to the special issue, we first introduce social network theory, then demonstrate with examples how social networks can influence individual and collective behaviors, and finally conclude with some outstanding questions for future primatological research. Am. J. Primatol. 73:703?719, 2011. ? 2011 Wiley-Liss, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0275-2565 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1002/ajp.20915 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6410  
Permanent link to this record
 

 
Author Esch, L.; Wöhr, C.; Erhard, M.; Krueger, K. doi  openurl
  Title Horses&#65533; (Equus Caballus) Laterality, Stress Hormones, and Task Related Behavior in Innovative Problem-Solving Type Journal Article
  Year 2019 Publication Animals Abbreviated Journal Animals  
  Volume 9 Issue 5 Pages 265  
  Keywords (down) innovative behavior; brain lateralization; glucocorticoid metabolites; behavioral traits; equine cognition  
  Abstract Domesticated horses are constantly confronted with novel tasks. A recent study on anecdotal data indicates that some are innovative in dealing with such tasks. However, innovative behavior in horses has not previously been investigated under experimental conditions. In this study, we investigated whether 16 horses found an innovative solution when confronted with a novel feeder. Moreover, we investigated whether innovative behavior in horses may be affected by individual aspects such as: age, sex, size, motor and sensory laterality, fecal stress hormone concentrations (GCMs), and task-related behavior. Our study revealed evidence for 25% of the horses being capable of innovative problem solving for operating a novel feeder. Innovative horses of the present study were active, tenacious, and may be considered to have a higher inhibitory control, which was revealed by their task related behavior. Furthermore, they appeared to be emotional, reflected by high baseline GCM concentrations and a left sensory and motor laterality. These findings may contribute to the understanding of horses&#65533; cognitive capacities to deal with their environment and calls for enriched environments in sports and leisure horse management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Esch2019 Serial 6570  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords (down) Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print