toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Czerlinski, G.H.; Wagner, M.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the system liver alcohol dehydrogenase, NADH and imidazole Type Journal Article
  Year 1975 Publication Acta Chemica Scandinavica. Series B: Organic Chemistry and Biochemistry Abbreviated Journal Acta Chem Scand B  
  Volume 29 Issue (up) 8 Pages 797-810  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Computers; Hydrogen-Ion Concentration; Imidazoles/*metabolism; Kinetics; Liver/enzymology/*metabolism; Mathematics; Models, Chemical; NAD/*metabolism; Time Factors  
  Abstract Several years ago, Theorell and Czerlinski conducted experiments on the system of horse liver alcohol dehydrogenase, reduced nicotinamide adenine dinucleotide and imidazole, using the first version of the temperature jump apparatus with detection of changes in fluorescence. These early experiments were repeated with improved instrumentation and confirmed the early experiments in general terms. However, the improved detection system allowed to measure a slight concentration dependence of the relaxation time of around 3 ms. Furthermore, the chemical relaxation time was smaller than the one determined earlier (by factor 2). The data were evaluated much more rigorously than before, allowing an appropriate interpretation of the results. The observed relaxation time is largely due to rate constants in an interconversion of ternary complexes, which are faster than three (of the four) dissociation rate constants, determined previously by Theorell and McKinley-McKee.1,2 This fact contributed to earlier difficulties of finding any concentration dependence. However, the binding of imidazole to the binary enzyme-coenzyme complex can be made to couple kinetically into the interconversion rate of the two ternary complexes. The observed signal derives largely from the ternary complex(es). A substantial fluorescence signal change is associated with the observed relaxation process, suggesting a relocation of the imidazole in reference to the nicotinamide moiety of the bound coenzyme. Nine models are considered with two types of coupling of pre-equilibria (none-all). Quantitative evaluations favor the model with two ternary complexes connected by an interconversion outside the four-step (bimolecular) cycle. The ternary complex outside the cycle has much higher fluorescence yield than the one inside. The interconversion equilibrium is near unity for imidazole. If it would be shifted very much to the side of the “dead-end” complex (as in isobutyramide?!), stimulating action could not take place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-4369 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:882 Approved no  
  Call Number refbase @ user @ Serial 3887  
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue (up) Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print