toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Iversen, I.H.; Matsuzawa, T. doi  openurl
  Title (up) Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 3 Pages 169-183  
  Keywords Animals; Female; Hand/physiology; Motion Perception/*physiology; Movement/physiology; Pan troglodytes/*physiology; Spatial Behavior/*physiology; *Task Performance and Analysis; User-Computer Interface; Visual Perception/physiology  
  Abstract The experiments investigated how two adult captive chimpanzees learned to navigate in an automated interception task. They had to capture a visual target that moved predictably on a touch monitor. The aim of the study was to determine the learning stages that led to an efficient strategy of intercepting the target. The chimpanzees had prior training in moving a finger on a touch monitor and were exposed to the interception task without any explicit training. With a finger the subject could move a small “ball” at any speed on the screen toward a visual target that moved at a fixed speed either back and forth in a linear path or around the edge of the screen in a rectangular pattern. Initial ball and target locations varied from trial to trial. The subjects received a small fruit reinforcement when they hit the target with the ball. The speed of target movement was increased across training stages up to 38 cm/s. Learning progressed from merely chasing the target to intercepting the target by moving the ball to a point on the screen that coincided with arrival of the target at that point. Performance improvement consisted of reduction in redundancy of the movement path and reduction in the time to target interception. Analysis of the finger's movement path showed that the subjects anticipated the target's movement even before it began to move. Thus, the subjects learned to use the target's initial resting location at trial onset as a predictive signal for where the target would later be when it began moving. During probe trials, where the target unpredictably remained stationary throughout the trial, the subjects first moved the ball in anticipation of expected target movement and then corrected the movement to steer the ball to the resting target. Anticipatory ball movement in probe trials with novel ball and target locations (tested for one subject) showed generalized interception beyond the trained ball and target locations. The experiments illustrate in a laboratory setting the development of a highly complex and adaptive motor performance that resembles navigational skills seen in natural settings where predators intercept the path of moving prey.  
  Address Department of Psychology, University of North Florida, Jacksonville, FL 32224, USA. iiversen@unf.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12761656 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2567  
Permanent link to this record
 

 
Author Hostetter, A.B.; Cantero, M.; Hopkins, W.D. url  openurl
  Title (up) Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to the attentional status of a human (Homo sapiens) Type Journal Article
  Year 2001 Publication Journal of Comparative Psychology Abbreviated Journal J. Comp. Psychol.  
  Volume 115 Issue 4 Pages 337-343  
  Keywords Animals; *Attention; *Communication Methods, Total; Female; *Gestures; Humans; Male; Motivation; Pan troglodytes/*psychology; Social Environment; Species Specificity; *Vocalization, Animal  
  Abstract This study examined the communicative behavior of 49 captive chimpanzees (Pan troglodytes), particularly their use of vocalizations, manual gestures, and other auditory- or tactile-based behaviors as a means of gaining an inattentive audience's attention. A human (Homo sapiens) experimenter held a banana while oriented either toward or away from the chimpanzee. The chimpanzees' behavior was recorded for 60 s. Chimpanzees emitted vocalizations faster and were more likely to produce vocalizations as their 1st communicative behavior when a human was oriented away from them. Chimpanzees used manual gestures more frequently and faster when the human was oriented toward them. These results replicate the findings of earlier studies on chimpanzee gestural communication and provide new information about the intentional and functional use of their vocalizations.  
  Address Department of Psychology, Berry College, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11824896 Approved yes  
  Call Number Equine Behaviour @ team @ Serial 4970  
Permanent link to this record
 

 
Author Uller, C. doi  openurl
  Title (up) Disposition to recognize goals in infant chimpanzees Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 154-161  
  Keywords Analysis of Variance; Animals; Female; Fixation, Ocular; *Goals; *Intention; Male; Pan troglodytes/*psychology; Pattern Recognition, Visual; *Problem Solving; *Recognition (Psychology)  
  Abstract Do nonhuman primates attribute goals to others? Traditional studies with chimpanzees provide equivocal evidence for “mind reading” in nonhuman primates. Here we adopt looking time, a methodology commonly used with human infants to test infant chimpanzees. In this experiment, four infant chimpanzees saw computer-generated stimuli that mimicked a goal-directed behavior. The baby chimps performed as well as human infants, namely, they were sensitive to the trajectories of the objects, thus suggesting that chimpanzees may be endowed with a disposition to understand goal-directed behaviors. The theoretical implications of these results are discussed.  
  Address Department of Psychology, University of Essex, Wivenhoe Park, C04 3SQ, Colchester, UK. uller40@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14685823 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2546  
Permanent link to this record
 

 
Author Collier-Baker, E.; Davis, J.M.; Nielsen, M.; Suddendorf, T. doi  openurl
  Title (up) Do chimpanzees (Pan troglodytes) understand single invisible displacement? Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 1 Pages 55-61  
  Keywords Animals; Behavior, Animal; *Cognition; Male; Pan troglodytes/*psychology; *Space Perception; *Spatial Behavior; Task Performance and Analysis; *Visual Perception  
  Abstract Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.  
  Address Early Cognitive Development Unit, School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia. e.collier-baker@psy.uq.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16163481 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2482  
Permanent link to this record
 

 
Author Horowitz, A.C. doi  openurl
  Title (up) Do humans ape? Or do apes human? Imitation and intention in humans (Homo sapiens) and other animals Type Journal Article
  Year 2003 Publication Journal of comparative psychology Abbreviated Journal J Comp Psychol  
  Volume 117 Issue 3 Pages 325-336  
  Keywords Adolescent; Adult; Animals; *Appetitive Behavior; Attention; Child, Preschool; Concept Formation; Female; Humans; *Imitative Behavior; Male; Motivation; Pan troglodytes/*psychology; *Problem Solving; *Psychomotor Performance; Reaction Time; Species Specificity  
  Abstract A. Whiten, D. M. Custance, J.-C. Gomez, P. Teixidor, and K. A. Bard (1996) tested chimpanzees' (Pan troglodytes) and human children's (Homo sapiens) skills at imitation with a 2-action test on an “artificial fruit.” Chimpanzees imitated to a restricted degree; children were more thoroughly imitative. Such results prompted some to assert that the difference in imitation indicates a difference in the subjects' understanding of the intentions of the demonstrator (M. Tomasello, 1996). In this experiment, 37 adult human subjects were tested with the artificial fruit. Far from being perfect imitators, the adults were less imitative than the children. These results cast doubt on the inference from imitative performance to an ability to understand others' intentions. The results also demonstrate how any test of imitation requires a control group and attention to the level of behavioral analysis.  
  Address Department of Cognitive Science, University of California, San Diego, CA, USA. ahorowitz@crl.ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. : 1983 Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14498809 Approved yes  
  Call Number refbase @ user @ Serial 736  
Permanent link to this record
 

 
Author Gallup, G.G.J. openurl 
  Title (up) Do minds exist in species other than our own? Type Journal Article
  Year 1985 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 9 Issue 4 Pages 631-641  
  Keywords Animals; Awareness; *Behavior, Animal; Child Psychology; Child, Preschool; *Cognition; Consciousness; Evolution; Humans; Infant; Language; Pan troglodytes; Philosophy; Psychological Theory; Species Specificity  
  Abstract An answer to the question of animal awareness depends on evidence, not intuition, anecdote, or debate. This paper examines some of the problems inherent in an analysis of animal awareness, and whether animals might be aware of being aware is offered as a more meaningful distinction. A framework is presented which can be used to make a determination about the extent to which other species have experiences similar to ours based on their ability to make inferences and attributions about mental states in others. The evidence from both humans and animals is consistent with the idea that the capacity to use experience to infer the experience of others is a byproduct of self-awareness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4080281 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2808  
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H. doi  openurl
  Title (up) Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
  Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull  
  Volume 70 Issue 2 Pages 124-157  
  Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves  
  Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.  
  Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16782503 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2623  
Permanent link to this record
 

 
Author Neiworth, J.J.; Hassett, J.M.; Sylvester, C.J. doi  openurl
  Title (up) Face processing in humans and new world monkeys: the influence of experiential and ecological factors Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 125-134  
  Keywords Adolescent; Adult; Animals; Ecology; *Face; Female; Humans; Male; Pan troglodytes/*physiology; Species Specificity; Visual Perception/*physiology  
  Abstract This study tests whether the face-processing system of humans and a nonhuman primate species share characteristics that would allow for early and quick processing of socially salient stimuli: a sensitivity toward conspecific faces, a sensitivity toward highly practiced face stimuli, and an ability to generalize changes in the face that do not suggest a new identity, such as a face differently oriented. The look rates by adult tamarins and humans toward conspecific and other primate faces were examined to determine if these characteristics are shared. A visual paired comparison (VPC) task presented subjects with either a human face, chimpanzee face, tamarin face, or an object as a sample, and then a pair containing the previous stimulus and a novel stimulus was presented. The stimuli were either presented all in an upright orientation, or all in an inverted orientation. The novel stimulus in the pair was either an orientation change of the same face/object or a new example of the same type of face/object, and the stimuli were shown either in an upright orientation or in an inverted orientation. Preference to novelty scores revealed that humans attended most to novel individual human faces, and this effect decreased significantly if the stimuli were inverted. Tamarins showed preferential looking toward novel orientations of previously seen tamarin faces in the upright orientation, but not in an inverted orientation. Similarly, their preference to look longer at novel tamarin and human faces within the pair was reduced significantly with inverted stimuli. The results confirmed prior findings in humans that novel human faces generate more attention in the upright than in the inverted orientation. The monkeys also attended more to faces of conspecifics, but showed an inversion effect to orientation change in tamarin faces and to identity changes in tamarin and human faces. The results indicate configural processing restricted to particular kinds of primate faces by a New World monkey species, with configural processing influenced by life experience (human faces and tamarin faces) and specialized to process orientation changes specific to conspecific faces.  
  Address Department of Psychology, Carleton College, Northfield, MN 55057, USA. jneiwort@carleton.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909230 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2454  
Permanent link to this record
 

 
Author Horner, V.; Whiten, A.; Flynn, E.; de Waal, F.B.M. doi  openurl
  Title (up) Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children Type Journal Article
  Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 103 Issue 37 Pages 13878-13883  
  Keywords Animals; Child, Preschool; Humans; *Imitative Behavior; Pan troglodytes/*psychology  
  Abstract Observational studies of wild chimpanzees (Pan troglodytes) have revealed population-specific differences in behavior, thought to represent cultural variation. Field studies have also reported behaviors indicative of cultural learning, such as close observation of adult skills by infants, and the use of similar foraging techniques within a population over many generations. Although experimental studies have shown that chimpanzees are able to learn complex behaviors by observation, it is unclear how closely these studies simulate the learning environment found in the wild. In the present study we have used a diffusion chain paradigm, whereby a behavior is passed from one individual to the next in a linear sequence in an attempt to simulate intergenerational transmission of a foraging skill. Using a powerful three-group, two-action methodology, we found that alternative methods used to obtain food from a foraging device (“lift door” versus “slide door”) were accurately transmitted along two chains of six and five chimpanzees, respectively, such that the last chimpanzee in the chain used the same method as the original trained model. The fidelity of transmission within each chain is remarkable given that several individuals in the no-model control group were able to discover either method by individual exploration. A comparative study with human children revealed similar results. This study is the first to experimentally demonstrate the linear transmission of alternative foraging techniques by non-human primates. Our results show that chimpanzees have a capacity to sustain local traditions across multiple simulated generations.  
  Address Centre for Social Learning and Cognitive Evolution, School of Psychology, University of St. Andrews, Fife KY16 9JP, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16938863 Approved no  
  Call Number refbase @ user @ Serial 159  
Permanent link to this record
 

 
Author Tanaka, M.; Tomonaga, M.; Matsuzawa, T. doi  openurl
  Title (up) Finger drawing by infant chimpanzees ( Pan troglodytes) Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 4 Pages 245-251  
  Keywords Animals; *Art; Female; *Fingers; *Gestures; Male; Motor Skills/*physiology; Pan troglodytes/*physiology/*psychology  
  Abstract We introduced a new technique to investigate the development of scribbling in very young infants. We tested three infant chimpanzees to compare the developmental processes of scribbling between humans and chimpanzees. While human infants start to scribble on paper at around the age of 18 months, our 13- to 23-month-old infant chimpanzees had never been observed scribbling prior to this study. We used a notebook computer with a touch-sensitive screen. This apparatus was able to record the location of the subjects' touches on the screen. Each touch generated a fingertip-sized dot at the corresponding on-screen location. During spontaneous interactions with this apparatus, all three infants and two mother chimpanzees left scribbles with their fingers on the screen. The scribbles contained not only simple dots or short lines, but also curves and hook-like lines or loops, most of which were observed in the instrumental drawings of adult chimpanzees. The results suggest that perceptual-motor control for finger drawing develops in infant chimpanzees. Two of the infants performed their first scribble with a marker on paper at the age of 20-23 months. Just prior to this, they showed a rapid increase in combinatory manipulation of objects. These findings suggest that the development of combinatory manipulation of objects as well as that of perceptual-motor control may be necessary for the emergence of instrumental drawing on paper.  
  Address Section of Language and Intelligence, Primate Research Institute, Kyoto University, 41 Kanrin, 484-8506 Inuyama, Aichi, Japan. mtanaka@pri.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14605946 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2551  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print