toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Krueger, K.; Farmer, K.; Heinze, J. url  doi
openurl 
  Title The effects of age, rank and neophobia on social learning in horses Type Journal Article
  Year 2014 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 17 Issue 3 Pages 645-655  
  Keywords Horse; Social learning; Sociality; Ecology; Social relationships  
  Abstract Social learning is said to meet the demands of complex environments in which individuals compete over resources and co-operate to share resources. Horses (Equus caballus) were thought to lack social learning skills because they feed on homogenously distributed resources with few reasons for conflict. However, the horse’s social environment is complex, which raises the possibility that its capacity for social transfer of feeding behaviour has been underestimated. We conducted a social learning experiment using 30 socially kept horses of different ages. Five horses, one from each group, were chosen as demonstrators, and the remaining 25 horses were designated observers. Observers from each group were allowed to watch their group demonstrator opening a feeding apparatus. We found that young, low ranking, and more exploratory horses learned by observing older members of their own group, and the older the horse, the more slowly it appeared to learn. Social learning may be an adaptive specialisation to the social environment. Older animals may avoid the potential costs of acquiring complex and potentially disadvantageous feeding behaviours from younger group members. We argue that horses show social learning in the context of their social ecology, and that research procedures must take such contexts into account. Misconceptions about the horse’s sociality may have hampered earlier studies.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5737  
Permanent link to this record
 

 
Author Kampmann, S.; Hampson, B.A.; Pollitt, C.C. url  doi
openurl 
  Title Population dynamics of feral horses (Equus caballus) following above-average rainfall in a semi-arid environment of Australia Type Journal Article
  Year 2013 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J  
  Volume 91 Issue 11 Pages 482-487  
  Keywords animal welfare; ecology; horses; reproduction; wildlife  
  Abstract Background Recent record rainfall in much of semi-arid Central Australia is the most likely reason for a feral horse population increase in excess of normal. Uncontrolled numbers of feral horses have habitat degradation and animal welfare implications. Objectives The aims of this study were to investigate the social structure of feral horses and assess their population growth rate following unseasonably high rainfall. Methods The study area was 4000 km2 of unmanaged, semi-arid country in Central Australia (latitude 24.50°S, longitude 132.10°E). Horses were identified by descriptive features from ground searches, movement-activated cameras and ‘hides’ positioned at key water holes. Wherever possible, sex and age categories were documented. Population growth rate was estimated by the number of foals divided by the number of horses older than 1 year in the observed population. Results A total of 1424 horses were identified and categorised, of which 335 were foals born within the current year. Only 123 juveniles were identified. Of the adult horses, 53.4% were male and 46.6% were female and this differed from parity (P = 0.04). Of the mares, 71.9% had a foal at foot and the population growth rate was 29.5%. Conclusions With a sustained population growth rate of 29.5%, this population of feral horses will more than double within 3 years. The high population increase will likely have a detrimental effect on native fauna and flora and the fragile, semi-arid ecosystems of Central Australia. After a period of high rainfall and plentiful resources, ‘normal’ drought conditions will return and many feral horses will starve and die as they compete for limited resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-0813 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5747  
Permanent link to this record
 

 
Author Janson, C.; Byrne, R. url  doi
openurl 
  Title What wild primates know about resources: opening up the black box Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 3 Pages 357-367  
  Keywords Cognitive map – Primate – Foraging – Ecology – Psychology  
  Abstract Abstract  We present the theoretical and practical difficulties of inferring the cognitive processes involved in spatial movement decisions of primates and other animals based on studies of their foraging behavior in the wild. Because the possible cognitive processes involved in foraging are not known a priori for a given species, some observed spatial movements could be consistent with a large number of processes ranging from simple undirected search processes to strategic goal-oriented travel. Two basic approaches can help to reveal the cognitive processes: (1) experiments designed to test specific mechanisms; (2) comparison of observed movements with predicted ones based on models of hypothesized foraging modes (ideally, quantitative ones). We describe how these two approaches have been applied to evidence for spatial knowledge of resources in primates, and for various hypothesized goals of spatial decisions in primates, reviewing what is now established. We conclude with a synthesis emphasizing what kinds of spatial movement data on unmanipulated primate populations in the wild are most useful in deciphering goal-oriented processes from random processes. Basic to all of these is an estimate of the animals ability to detect resources during search. Given knowledge of the animals detection ability, there are several observable patterns of resource use incompatible with a pure search process. These patterns include increasing movement speed when approaching versus leaving a resource, increasingly directed movement toward more valuable resources, and directed travel to distant resources from many starting locations. Thus, it should be possible to assess and compare spatial cognition across a variety of primate species and thus trace its ecological and evolutionary correlates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4214  
Permanent link to this record
 

 
Author Lusseau, D.; Conradt, L. url  doi
openurl 
  Title The emergence of unshared consensus decisions in bottlenose dolphins Type Journal Article
  Year 2009 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 63 Issue 7 Pages 1067-1077  
  Keywords Behavioral ecology – Decision-making process – Bottlenose dolphin – Group living  
  Abstract Abstract  Unshared consensus decision-making processes, in which one or a small number of individuals make the decision for the rest of a group, are rarely documented. However, this mechanism can be beneficial for all group members when one individual has greater knowledge about the benefits of the decision than other group members. Such decisions are reached during certain activity shifts within the population of bottlenose dolphins residing in Doubtful Sound, New Zealand. Behavioral signals are performed by one individual and seem to precipitate shifts in the behavior of the entire group: males perform side flops and initiate traveling bouts while females perform upside-down lobtails and terminate traveling bouts. However, these signals are not observed at all activity shifts. We find that, while side flops were performed by males that have greater knowledge than other male group members, this was not the case for females performing upside-down lobtails. The reason for this could have been that a generally high knowledge about the optimal timing of travel terminations rendered it less important which individual female made the decision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5109  
Permanent link to this record
 

 
Author Linklater, W.L. doi  openurl
  Title Adaptive explanation in socio-ecology: lessons from the Equidae Type Journal Article
  Year 2000 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal Biol. Rev.  
  Volume 75 Issue 1 Pages 1-20  
  Keywords *Adaptation, Physiological; Animals; Ecology; Equidae/*physiology; Female; Male; Phylogeny  
  Abstract Socio-ecological explanations for intra- and interspecific variation in the social and spatial organization of animals predominate in the scientific literature. The socio-ecological model, developed first for the Bovidae and Cervidae, is commonly applied more widely to other groups including the Equidae. Intraspecific comparisons are particularly valuable because they allow the role of environment and demography on social and spatial organization to be understood while controlling for phylogeny or morphology which confound interspecific comparisons. Feral horse (Equus caballus Linnaeus 1758) populations with different demography inhabit a range of environments throughout the world. I use 56 reports to obtain 23 measures or characteristics of the behaviour and the social and spatial organization of 19 feral horse populations in which the environment, demography, management, research effort and sample size are also described. Comparison shows that different populations had remarkably similar social and spatial organization and that group sizes and composition, and home range sizes varied as much within as between populations. I assess the few exceptions to uniformity and conclude that they are due to the attributes of the studies themselves, particularly to poor definition of terms and inadequate empiricism, rather than to the environment or demography per se. Interspecific comparisons show that equid species adhere to their different social and spatial organizations despite similarities in their environments and even when species are sympatric. Furthermore, equid male territoriality has been ill-defined in previous studies, observations presented as evidence of territoriality are also found in non-territorial equids, and populations of supposedly territorial species demonstrate female defence polygyny. Thus, territoriality may not be a useful categorization in the Equidae. Moreover, although equid socio-ecologists have relied on the socio-ecological model derived from the extremely diverse Bovidae and Cervidae for explanations of variation in equine society, the homomorphic, but large and polygynous, and monogeneric Equidae do not support previous socio-ecological explanations for relationships between body size, mating system and sexual dimorphism in ungulates. Consequently, in spite of the efforts of numerous authors during the past two decades, functional explanations of apparent differences in feral horse and equid social and spatial organization and behaviour based on assumptions of their current utility in the environmental or demographic context remain unconvincing. Nevertheless, differences in social cohesion between species that are insensitive to intra- and interspecific variation in habitat and predation pressure warrant explanation. Thus, I propose alternative avenues of inquiry including testing for species-specific differences in inter-individual aggression and investigating the role of phylogenetic constraints in equine society. The Equidae are evidence of the relative importance of phylogeny and biological structure, and unimportance of the present-day environment, in animal behaviour and social and spatial organization.  
  Address Institute of Natural Resources, Massey University, Palmerston North, New Zealand  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1464-7931 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10740891 Approved no  
  Call Number Serial 2024  
Permanent link to this record
 

 
Author Macphail, E.M.; Boldhuis, J.J doi  openurl
  Title The evolution of intelligence: adaptive specializations versusgeneral process Type Journal Article
  Year 2001 Publication Biological Reviews Abbreviated Journal  
  Volume 76 Issue 3 Pages 341-364  
  Keywords biological constraints, corvids, ecology, food-storing birds, hippocampal size, parids, spatial learning, spatial memory, spatial module.  
  Abstract Darwin argued that between-species differences in intelligence were differences of degree, not of kind. The contemporary ecological approach to animal cognition argues that animals have evolved species-specific and problem-specific processes to solve problems associated with their particular ecological niches: thus different species use different processes, and within a species, different processes are used to tackle problems involving different inputs. This approach contrasts both with Darwin's view and with the general process view, according to which the same central processes of learning and memory are used across an extensive range of problems involving very different inputs. We review evidence relevant to the claim that the learning and memory performance of non-human animals varies according to the nature of the stimuli involved. We first discuss the resource distribution hypothesis, olfactory learning-set formation, and the 'biological constraints' literature, but find no convincing support from these topics for the ecological account of cognition. We then discuss the claim that the performance of birds in spatial tasks of learning and memory is superior in species that depend heavily upon stored food compared to species that either show less dependence upon stored food or do not store food. If it could be shown that storing species enjoy a superiority specifically in spatial (and not non-spatial) tasks, this would argue that spatial tasks are indeed solved using different processes from those used in non-spatial tasks. Our review of this literature does not find a consistent superiority of storing over non-storing birds in spatial tasks, and, in particular, no evidence of enhanced superiority of storing species when the task demands are increased, by, for example, increasing the number of items to be recalled or the duration of the retention period. We discuss also the observation that the hippocampus of storing birds is larger than that of non-storing birds, and find evidence contrary to the view that hippocampal enlargement is associated with enhanced spatial memory; we are, however, unable to suggest a convincing alternative explanation for hippocampal enlargement. The failure to find solid support for the ecological view supports the view that there are no qualitative differences in cognition between animal species in the processes of learning and memory. We also argue that our review supports our contention that speculation about the phylogenetic development and function of behavioural processes does not provide a solid basis for gaining insight into the nature of those processes. We end by confessing to a belief in one major qualitative difference in cognition in animals: we believe that humans alone are capable of acquiring language, and that it is this capacity that divides our intelligence so sharply from non-human intelligence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4797  
Permanent link to this record
 

 
Author Healy,S.; Braithwaite, V doi  openurl
  Title Cognitive ecology: a field of substance? Type Journal Article
  Year 2000 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol  
  Volume 15 Issue 1 Pages 22-26  
  Keywords Cognitive ecology; Neuroethology; Cognition; Ecology; Evolution; Orientation mechanisms  
  Abstract In 1993, Les Real invented the label 'cognitive ecology'. This label was intended for work that brought cognitive science and behavioural ecology together. Real's article stressed the importance of such an approach to the understanding of behaviour. At the end of a decade in which more interdisciplinary work on behaviour has been seen than for many years, it is time to assess whether cognitive ecology is a label describing an active field.  
  Address Division of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JT  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10603501 Approved no  
  Call Number refbase @ user @ Serial 837  
Permanent link to this record
 

 
Author Griffin, A.S. doi  openurl
  Title Socially acquired predator avoidance: Is it just classical conditioning? Type Journal Article
  Year 2008 Publication Brain Research Bulletin Abbreviated Journal Special Issue:Brain Mechanisms, Cognition and Behaviour in Birds  
  Volume 76 Issue 3 Pages 264-271  
  Keywords Learning; Classical (Pavlovian) conditioning; Social learning; Ecological specialization; General process theory; Ecology; Predation; Backward conditioning  
  Abstract Associative learning theories presume the existence of a general purpose learning process, the structure of which does not mirror the demands of any particular learning problem. In contrast, learning scientists working within an Evolutionary Biology tradition believe that learning processes have been shaped by ecological demands. One potential means of exploring how ecology may have modified properties of acquisition is to use associative learning theory as a framework within which to analyse a particular learning phenomenon. Recent work has used this approach to examine whether socially transmitted predator avoidance can be conceptualised as a classical conditioning process in which a novel predator stimulus acts as a conditioned stimulus (CS) and acquires control over an avoidance response after it has become associated with alarm signals of social companions, the unconditioned stimulus (US). I review here a series of studies examining the effect of CS/US presentation timing on the likelihood of acquisition. Results suggest that socially acquired predator avoidance may be less sensitive to forward relationships than traditional classical conditioning paradigms. I make the case that socially acquired predator avoidance is an exciting novel one-trial learning paradigm that could be studied along side fear conditioning. Comparisons between social and non-social learning of danger at both the behavioural and neural level may yield a better understanding of how ecology might shape properties and mechanisms of learning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4697  
Permanent link to this record
 

 
Author Burke, D.; Cieplucha, C.; Cass, J.; Russell, F.; Fry, G. doi  openurl
  Title Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus) Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 2 Pages 79-84  
  Keywords Animals; Echidna/*psychology; Ecology; Female; *Learning; *Memory; *Predatory Behavior; Reinforcement (Psychology)  
  Abstract Numerous previous investigators have explained species differences in spatial memory performance in terms of differences in foraging ecology. In three experiments we attempted to extend these findings by examining the extent to which the spatial memory performance of echidnas (or “spiny anteaters”) can be understood in terms of the spatio-temporal distribution of their prey (ants and termites). This is a species and a foraging situation that have not been examined in this way before. Echidnas were better able to learn to avoid a previously rewarding location (to “win-shift”) than to learn to return to a previously rewarding location (to “win-stay”), at short retention intervals, but were unable to learn either of these strategies at retention intervals of 90 min. The short retention interval results support the ecological hypothesis, but the long retention interval results do not.  
  Address Department of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia. darren_burke@uow.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12150039 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2605  
Permanent link to this record
 

 
Author Sterck, E.; Watts, D.; van Schaik, C. doi  openurl
  Title The evolution of female social relationships in nonhuman primates Type Journal Article
  Year 1997 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav. Ecol. Sociobiol.  
  Volume 41 Issue 5 Pages 291-309  
  Keywords ecology; matrilocal; primate; social; theory  
  Abstract Considerable interspeci®c variation in female social relationships occurs in gregarious primates, particularly with regard to agonism and cooperation between females and to the quality of female relationships with males. This variation exists alongside variation in female philopatry and dispersal. Socioecological theories have tried to explain variation in female-female social relationships from an evolutionary perspective focused on ecological factors, notably predation and food distribution. According to the current ``ecological model'', predation risk forces females of most diurnal primate species to live in groups; the strength of the contest component of competition for resources within and between groups then largely determines social relationships between females. Social elationships among gregarious females are here characterized as DispersalEgalitarian, Resident-Nepotistic, Resident-Nepotistic-Tolerant, or Resident-Egalitarian. This ecological model has successfully explained i€erences in the occurrence of formal submission signals, decided dominance relation ships, coalitions and female philopatry. Group size and female rank generally a€ect female reproduction success as the model predicts, and studies of closely related species in di€erent ecological circumstances underscore the importance of the model. Some cases, however, can only be explained when we extend the model to incorporate the e€ects of infanticide risk and habitat saturation. We review evidence in support of the ecological model and test the power of alternative models that invoke between-group competition, forced female philopatry, demographic female recruitment, male interventions into female aggression, and male harassment.

Not one of these models can replace the ecological model, which already encompasses the between-group competition. Currently the best model, which explains

several phenomena that the ecological model does not, is a ``socioecological model'' based on the combined importance of ecological factors, habitat saturation and infanticide avoidance. We note some points of similarity and divergence with other mammalian taxa; these remain to be explored in detail.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5227  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print