toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Barrey, E.; Galloux, P. openurl 
  Title Analysis of the equine jumping technique by accelerometry Type Journal Article
  Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 23 Pages 45-49  
  Keywords *Acceleration; Analysis of Variance; Animals; Forelimb/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors  
  Abstract The purpose of this study was to demonstrate the relationships between jumping technique and dorsoventral acceleration measured at the sternum. Eight saddle horses of various jumping abilities competed on a selective experimental show jumping course including 14 obstacles. An accelerometric belt fastened onto the thorax continuously measured the dorsoventral acceleration during the course. At each jump, 11 locomotor parameters (acceleration peaks, durations and stride frequency) were obtained from the dorsoventral acceleration-time curves. The type of obstacle significantly influenced the hindlimb acceleration peak at take-off and the landing acceleration peak (P<0.01). The poor jumpers exhibited a higher mean forelimb acceleration peak at take-off, a higher forelimb/hindlimb ratio between peaks of acceleration (F/H), and a lower approach stride frequency than good jumpers. Knocking over an obstacle was significantly associated with a low hindlimb acceleration peak at take-off and a high F/H ratio (P<0.01). In order to observe the continuous changes in the frequency domain of the dorsoventral acceleration during the approach and take-off phase, a Morlet's wavelet analysis was computed for each horse jumping over a series of 3 vertical obstacles. Different patterns of time-frequency images obtained by wavelet analysis were found when the horse either knocked over a vertical obstacle or cleared it. In the latter case, the image pattern showed an instantaneous increase in stride frequency at the end of the approach phase, and a marked energy content in the middle frequency range at take-off.  
  Address INRA Station de Genetique Quantitative et Appliquee, Groupe cheval, Jouy-en-Josas, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9354288 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3796  
Permanent link to this record
 

 
Author (up) Ryan, C.T.; Schaer, B.L.D.; Nunamaker, D.M. openurl 
  Title A novel wireless data acquisition system for the measurement of hoof accelerations in the exercising horse Type Journal Article
  Year 2006 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 38 Issue 7 Pages 671-674  
  Keywords *Acceleration; Animals; Biomechanics; Equipment and Supplies/*veterinary; Hoof and Claw/*physiology; Horses/*physiology; Kinetics; Musculoskeletal Physiology; Physical Conditioning, Animal/*physiology; Running/physiology  
  Abstract REASONS FOR PERFORMING STUDY: A device is needed to safely and wirelessly evaluate accelerations experienced by the horse hoof under a variety of surface conditions with the horse exercising at training or racing speeds. OBJECTIVES: To develop a miniaturised wireless data acquisition system (WDAS) which reliably records hoof accelerations and the times over which they occur in a minimally invasive manner in the exercising Thoroughbred. METHODS: The following criteria were set for device development: production of a lightweight and minimally invasive system, which provides an adequate acceleration range, appropriate frequency response to capture high speed events, and compatibility with a low power wireless telemetry system. Following device development, the WDAS was calibrated, and tested in 6 Thoroughbred horses over a variety of surfaces. RESULTS: Collection of acceleration in seven trials using 6 horses over a variety of surfaces resulted in repeatable acceleration data with respect to the overall characteristic shape of the impact profile. Impact accelerations varied with surface, ranging 34.8-191.7 g. Accelerations on take off were in a similar range, although higher in some trials. Peak impact accelerations tended to larger over the grass paddock surface, than either the indoor arena or the dirt track. During dirt track trials, accelerations on take-off were often comparably larger than those observed on impact within the same footfall. CONCLUSIONS: This study reports the development of a wireless system that successfully measures hoof acceleration in a minimally invasive manner over a variety of surface and exercise conditions. POTENTIAL RELEVANCE: The WDAS will be used in further studies to evaluate various components of the horse-racetrack interface, in an attempt to identify risk factors for musculoskeletal injury in the Thoroughbred racehorse.  
  Address Richard S. Reynolds, Jr. Comparative Orthopedic Research Laboratory, Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17228584 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4023  
Permanent link to this record
 

 
Author (up) Santamaria, S.; Bobbert, M.E.; Back, W.; Barneveld, A.; van Weeren, P.R. openurl 
  Title Variation in free jumping technique within and among horses with little experience in show jumping Type Journal Article
  Year 2004 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res  
  Volume 65 Issue 7 Pages 938-944  
  Keywords *Acceleration; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Models, Biological; Video Recording  
  Abstract OBJECTIVE: To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among horses. ANIMALS: Fifteen 4-year-old Dutch Warmblood horses. PROCEDURE: The horses were raised under standardized conditions and trained in accordance with a fixed protocol for a short period. Subsequently, horses were analyzed kinematically during free jumping over a fence with a height of 1.05 m. RESULTS: Within-horse variation in all variables that quantified jumping technique was smaller than variation among horses. However, some horses had less variation than others. Height of the center of gravity (CG) at the apex of the jump ranged from 1.80 to 2.01 m among horses; this variation could be explained by the variation in vertical velocity of the CG at takeoff (r, 0.78). Horses that had higher vertical velocity at takeoff left the ground and landed again farther from the fence, had shorter push-off phases for the forelimbs and hind limbs, and generated greater vertical acceleration of the CG primarily during the hind limb push-off. However, all horses cleared the fence successfully, independent of jumping technique. CONCLUSIONS AND CLINICAL RELEVANCE: Each horse had its own jumping technique. Differences among techniques were characterized by variations in the vertical velocity of the CG at takeoff. It must be determined whether jumping performance later in life can be predicted from observing free jumps of young horses.  
  Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9645 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15281652 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3772  
Permanent link to this record
 

 
Author (up) Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 207 Issue Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print