|   | 
Details
   web
Records
Author Ishida, N.; Hirano, T.; Mukoyama, H.
Title Detection of aberrant alleles in the D-loop region of equine mitochondrial DNA by single-strand conformation polymorphism (SSCP) analysis Type Journal Article
Year 1994 Publication (up) Animal Genetics Abbreviated Journal Anim Genet
Volume 25 Issue 4 Pages 287
Keywords *Alleles; Animals; Base Sequence; *DNA, Mitochondrial; DNA, Single-Stranded/genetics; Female; Gene Frequency; Genomic Imprinting; Horses/*genetics; Male; Molecular Sequence Data; Pedigree; *Polymorphism, Genetic
Abstract
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:7985852 Approved no
Call Number Equine Behaviour @ team @ Serial 2213
Permanent link to this record
 

 
Author Momozawa, Y.; Takeuchi, Y.; Tozaki, T.; Kikusui, T.; Hasegawa, T.; Raudsepp, T.; Chowdhary, B.P.; Kusunose, R.; Mori, Y.
Title SNP detection and radiation hybrid mapping in horses of nine candidate genes for temperament Type Journal Article
Year 2007 Publication (up) Animal Genetics Abbreviated Journal Anim Genet
Volume 38 Issue 1 Pages 81-83
Keywords Animals; *Behavior, Animal; Breeding; Horses/*genetics/physiology; *Polymorphism, Single Nucleotide; Radiation Hybrid Mapping; *Temperament
Abstract
Address Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo 113-8657, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:17257195 Approved no
Call Number Serial 1834
Permanent link to this record
 

 
Author Breen, M.; Downs, P.; Irvin, Z.; Bell, K.
Title Intrageneric amplification of horse microsatellite markers with emphasis on the Przewalski's horse (E. przewalskii) Type Journal Article
Year 1994 Publication (up) Animal Genetics Abbreviated Journal Anim Genet
Volume 25 Issue 6 Pages 401-405
Keywords Animals; DNA, Satellite/*genetics; *Gene Amplification; Gene Frequency; *Genetic Markers; Heterozygote; Horses/*genetics; Species Specificity
Abstract Primer sequences flanking 13 microsatellite loci isolated from the domestic horse (E. caballus) were successfully used to amplify homologous loci in the Przewalski's horse (E. przewalskii). The results demonstrate that the level of polymorphism at all 13 loci in the Przewalski's horse was comparable to that in the domestic horse and the overall exclusion probability in the Przewalski's horse was calculated to be 0.9994. The results suggest that it should be possible to use E. caballus-derived microsatellite markers to provide parentage verification and additional valuable information to the captive management of E. przewalskii. The ability to amplify corresponding loci in the remaining five species of the genus was also confirmed, illustrating the general application of markers isolated from the domestic horse to the evaluation of polymorphism in the other six species of the genus.
Address Australian Equine Blood Typing Research Laboratory, University of Queensland, St Lucia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:7695120 Approved no
Call Number Equine Behaviour @ team @ Serial 2246
Permanent link to this record
 

 
Author Wallner, B.; Brem, G.; Muller, M.; Achmann, R.
Title Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus Type Journal Article
Year 2003 Publication (up) Animal Genetics Abbreviated Journal Anim Genet
Volume 34 Issue 6 Pages 453-456
Keywords Animals; Base Sequence; DNA, Mitochondrial/genetics; Genetic Variation/*genetics; Horses/classification/*genetics; Male; Molecular Sequence Data; Phylogeny; Probability; Species Specificity; Y Chromosome/*genetics
Abstract The phylogenetic relationship between Equus przewalskii and E. caballus is often a matter of debate. Although these taxa have different chromosome numbers, they do not form monophyletic clades in a phylogenetic tree based on mtDNA sequences. Here we report sequence variation from five newly identified Y chromosome regions of the horse. Two fixed nucleotide differences on the Y chromosome clearly display Przewalski's horse and domestic horse as sister taxa. At both positions the Przewalski's horse haplotype shows the ancestral state, in common with the members of the zebra/ass lineage. We discuss the factors that may have led to the differences in mtDNA and Y-chromosomal observations.
Address Institut fur Tierzucht und Genetik, Veterinarmedizinische Universitat Wien, Veterinarplatz, Wien, Austria. wallner@i122server.vu-wien.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:14687077 Approved no
Call Number Equine Behaviour @ team @ Serial 5038
Permanent link to this record
 

 
Author Oakenfull, E.A.; Ryder, O.A.
Title Mitochondrial control region and 12S rRNA variation in Przewalski's horse (Equus przewalskii) Type Journal Article
Year 1998 Publication (up) Animal Genetics Abbreviated Journal Anim Genet
Volume 29 Issue 6 Pages 456-459
Keywords Animals; DNA, Mitochondrial/*genetics; Female; *Genetic Variation; Horses/*genetics; Male; Pedigree; RNA, Ribosomal/*genetics
Abstract Variation in the control region and the 12S rRNA gene of all surviving mitochondrial lineages of Przewalski's horse was investigated. Variation is low despite the present day population being descended from 13 individuals probably representing animals from three different regions of its range. Phylogenetic comparison of these sequences, with sequences for the domestic horse, does not resolve the ancestral status of either horse.
Address Center for Reproduction of Endangered Species, Zoological Society of San Diego, CA 92112, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:9883508 Approved no
Call Number Equine Behaviour @ team @ Serial 5040
Permanent link to this record
 

 
Author Aberle, K.S.; Hamann, H.; Drögemüller, C.; Distl, O.
Title Genetic diversity in German draught horse breeds compared with a group of primitive, riding and wild horses by means of microsatellite DNA markers Type Journal Article
Year 2004 Publication (up) Animal Genetics Abbreviated Journal Anim. Gen.
Volume 35 Issue 4 Pages 270-277
Keywords diversity; endangered breeds; genetic variation; horse; microsatellite
Abstract Summary We compared the genetic diversity and distance among six German draught horse breeds to wild (Przewalski's Horse), primitive (Icelandic Horse, Sorraia Horse, Exmoor Pony) or riding horse breeds (Hanoverian Warmblood, Arabian) by means of genotypic information from 30 microsatellite loci. The draught horse breeds included the South German Coldblood, Rhenish German Draught Horse, Mecklenburg Coldblood, Saxon Thuringa Coldblood, Black Forest Horse and Schleswig Draught Horse. Despite large differences in population sizes, the average observed heterozygosity (Ho) differed little among the heavy horse breeds (0.64�0.71), but was considerably lower than in the Hanoverian Warmblood or Icelandic Horse population. The mean number of alleles (NA) decreased more markedly with declining population sizes of German draught horse breeds (5.2�6.3) but did not reach the values of Hanoverian Warmblood (NA = 6.7). The coefficient of differentiation among the heavy horse breeds showed 11.6% of the diversity between the heavy horse breeds, as opposed to 21.2% between the other horse populations. The differentiation test revealed highly significant genetic differences among all draught horse breeds except the Mecklenburg and Saxon Thuringa Coldbloods. The Schleswig Draught Horse was the most distinct draught horse breed. In conclusion, the study demonstrated a clear distinction among the German draught horse breeds and even among breeds with a very short history of divergence like Rhenish German Draught Horse and its East German subpopulations Mecklenburg and Saxon Thuringa Coldblood.
Address
Corporate Author Thesis
Publisher Blackwell Science Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-2052 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5184
Permanent link to this record
 

 
Author Poletaeva, I.I.; Popova, N.V.; Romanova, L.G.
Title Genetic aspects of animal reasoning Type Journal Article
Year 1993 Publication (up) Behavior Genetics Abbreviated Journal
Volume 23 Issue 5 Pages 467-475
Keywords
Abstract This paper reviews the investigations of Prof. L. V. Krushinsky and his colleagues into the genetics of complex behaviors in mammals. The ability of animals to extrapolate the direction of a food stimulus movement was investigated in wild and domesticated foxes (including different fur-color mutants), wild brown rats, and laboratory rats and mice. Wild animals (raised in the laboratory) were shown to be superior to their respective domesticated forms on performance of the extrapolation task, especially in their scores for the first presentation, in which no previous experience could be used. Laboratory rats and mice demonstrated a low level of extrapolation performance. This means that only a few laboratory animals were capable of solving the task, i.e., the percentage of correct solutions was equivalent to chance. The brain weight selection program resulted in two mice strains with a 20% (90-mg) difference in brain weight. Ability to solve the extrapolation task was present in low-brain weight mice in generations 7-11 but declined with further selection. Investigation of extrapolation ability in mice with different chromosomal anomalies demonstrated that animals with Robertsonian translocations Rb(8,17) 1lem and Rb(8,17) 6Sic were capable of solving this task in a statistically significant majority of cases, while mice with fusion of other chromosomes, as well as CBA normal karyotype mice, performed no better than expected by chance. Mice with two types of partial trisomies and animals homo- and heterozygous for translocations were also tested. Although mice with T6 trisomy performed no better than expected by chance, animals with trisomy for a chromosome 17 fragment solved the task successfully. Thus, a genetic component underlying the ability to solve the extrapolation task was demonstrated in three animal species. The extrapolation task in animals is considered to reveal a general capacity for elementary reasoning. The genetic basis of this capacity is very complex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 3089
Permanent link to this record
 

 
Author Sluyter F.; Arseneault L.; Moffitt T.E.; Veenema A.H.; de Boer S.; Koolhaas J.M.
Title Toward an Animal Model for Antisocial Behavior: Parallels Between Mice and Humans: Aggression Type Journal Article
Year 2003 Publication (up) Behavior Genetics Abbreviated Journal
Volume 33 Issue Pages 563-574
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3497
Permanent link to this record
 

 
Author Morley, K.I.; Montgomery, G.W.
Title The genetics of cognitive processes: candidate genes in humans and animals Type Journal Article
Year 2001 Publication (up) Behavior Genetics Abbreviated Journal Behav Genet
Volume 31 Issue 6 Pages 511-531
Keywords Animals; *Chromosome Mapping; Drosophila melanogaster; Genetic Markers/*genetics; Humans; Intelligence/*genetics; Mental Retardation/genetics; Mice; Phenotype; Quantitative Trait, Heritable
Abstract It has been hypothesized that numerous genes contribute to individual variation in human cognition. An extensive search of the scientific literature was undertaken to identify candidate genes which might contribute to this complex trait. A list of over 150 candidate genes that may influence some aspect of cognition was compiled. Some genes are particularly strong candidates based on evidence for involvement in cognitive processes in humans, mice, and Drosophila melanogaster. This survey confirms that many genes are associated with cognitive variation and highlights the potential importance of animal models in the study of human cognition.
Address Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8244 ISBN Medium
Area Expedition Conference
Notes PMID:11838530 Approved no
Call Number Equine Behaviour @ team @ Serial 4141
Permanent link to this record
 

 
Author Bouchard, T.J.J.; Loehlin, J.C.
Title Genes, evolution, and personality Type Journal Article
Year 2001 Publication (up) Behavior Genetics Abbreviated Journal Behav Genet
Volume 31 Issue 3 Pages 243-273
Keywords Animals; *Evolution; Genetics, Behavioral; Humans; Individuality; Personality/*genetics; Twin Studies
Abstract There is abundant evidence, some of it reviewed in this paper, that personality traits are substantially influenced by the genes. Much remains to be understood about how and why this is the case. We argue that placing the behavior genetics of personality in the context of epidemiology, evolutionary psychology, and neighboring psychological domains such as interests and attitudes should help lead to new insights. We suggest that important methodological advances, such as measuring traits from multiple viewpoints, using large samples, and analyzing data by modern multivariate techniques, have already led to major changes in our view of such perennial puzzles as the role of “unshared environment” in personality. In the long run, but not yet, approaches via molecular genetics and brain physiology may also make decisive contributions to understanding the heritability of personality traits. We conclude that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.
Address Department of Psychology. University of Minnesota, Minneapolis 55455, USA. bouch001@tc.umn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8244 ISBN Medium
Area Expedition Conference
Notes PMID:11699599 Approved no
Call Number Equine Behaviour @ team @ Serial 4142
Permanent link to this record