toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mejdell, C.M.; Buvik, T.; Jørgensen, G.H.M.; Bøe, K.E. url  doi
openurl 
  Title Horses can learn to use symbols to communicate their preferences Type Journal Article
  Year 2016 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 184 Issue Pages 66-73  
  Keywords Operant conditioning; Blanket; Rug; Thermoregulation; Cognition; Clicker training  
  Abstract Abstract This paper describes a method in which horses learn to communicate by touching different neutral visual symbols, in order to tell the handler whether they want to have a blanket on or not. Horses were trained for 10–15 min per day, following a training program comprising ten steps in a strategic order. Reward based operant conditioning was used to teach horses to approach and touch a board, and to understand the meaning of three different symbols. Heat and cold challenges were performed to help learning and to check level of understanding. At certain stages, a learning criterion of correct responses for 8–14 successive trials had to be achieved before proceeding. After introducing the free choice situation, on average at training day 11, the horse could choose between a “no change” symbol and the symbol for either “blanket on” or “blanket off” depending on whether the horse already wore a blanket or not. A cut off point for performance or non-performance was set to day 14, and 23/23 horses successfully learned the task within this limit. Horses of warm-blood type needed fewer training days to reach criterion than cold-bloods (P < 0.05). Horses were then tested under differing weather conditions. Results show that choices made, i.e. the symbol touched, was not random but dependent on weather. Horses chose to stay without a blanket in nice weather, and they chose to have a blanket on when the weather was wet, windy and cold (χ2 = 36.67, P < 0.005). This indicates that horses both had an understanding of the consequence of their choice on own thermal comfort, and that they successfully had learned to communicate their preference by using the symbols. The method represents a novel tool for studying preferences in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6022  
Permanent link to this record
 

 
Author Mejdell, C.M.; Buvik, T.; Jørgensen, G.H.M.; Bøe, K.E. url  doi
openurl 
  Title Horses can learn to use symbols to communicate their preferences Type Journal Article
  Year 2016 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 184 Issue Pages 66-73  
  Keywords Operant conditioning; Blanket; Rug; Thermoregulation; Cognition; Clicker training  
  Abstract This paper describes a method in which horses learn to communicate by touching different neutral visual symbols, in order to tell the handler whether they want to have a blanket on or not. Horses were trained for 10-15min per day, following a training program comprising ten steps in a strategic order. Reward based operant conditioning was used to teach horses to approach and touch a board, and to understand the meaning of three different symbols. Heat and cold challenges were performed to help learning and to check level of understanding. At certain stages, a learning criterion of correct responses for 8-14 successive trials had to be achieved before proceeding. After introducing the free choice situation, on average at training day 11, the horse could choose between a “no change” symbol and the symbol for either “blanket on” or “blanket off” depending on whether the horse already wore a blanket or not. A cut off point for performance or non-performance was set to day 14, and 23/23 horses successfully learned the task within this limit. Horses of warm-blood type needed fewer training days to reach criterion than cold-bloods (P<0.05). Horses were then tested under differing weather conditions. Results show that choices made, i.e. the symbol touched, was not random but dependent on weather. Horses chose to stay without a blanket in nice weather, and they chose to have a blanket on when the weather was wet, windy and cold (χ2=36.67, P<0.005). This indicates that horses both had an understanding of the consequence of their choice on own thermal comfort, and that they successfully had learned to communicate their preference by using the symbols. The method represents a novel tool for studying preferences in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6617  
Permanent link to this record
 

 
Author Ahrendt, L.P.; Labouriau, R.; Malmkvist, J.; Nicol, C.J.; Christensen, J.W. url  doi
openurl 
  Title Development of a standard test to assess negative reinforcement learning in horses Type Journal Article
  Year 2015 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 169 Issue Pages 38-42  
  Keywords Algometry; Horse behaviour; Learning performance; Operant conditioning; Pressure-release; Horse training  
  Abstract Most horses are trained by negative reinforcement. Currently, however, no standardised test for evaluating horses' negative reinforcement learning ability is available. The aim of this study was to develop an objective test to investigate negative reinforcement learning in horses. Twenty-four Icelandic horses (3 years old) were included in this study. The horses were tested in a pressure-release task on three separate days with 10, 7 and 5 trials on each side, respectively. Each trial consisted of pressure being applied on the hindquarter with an algometer. The force of the pressure was increased until the horse moved laterally away from the point of pressure. There was a significant decrease in required force over trials on the first test day (P<0.001), but not the second and third day. The intercepts on days 2 and 3 differed significantly from day 1 (P<0.001), but not each other. Significantly stronger force was required on the right side compared to the left (P<0.001), but there was no difference between first and second side tested (P=0.56). Individual performance was evaluated by median-force and the change in force over trials on the first test day. These two measures may explain different characteristics of negative reinforcement learning. In conclusion, this study presents a novel, standardised test for evaluating negative reinforcement learning ability in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6650  
Permanent link to this record
 

 
Author Mejdell, C.M.; Buvik, T.; Jørgensen, G.H.M.; Bøe, K.E. url  doi
openurl 
  Title Horses can learn to use symbols to communicate their preferences Type Journal Article
  Year 2016 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 184 Issue Pages 66-73  
  Keywords Operant conditioning; Blanket; Rug; Thermoregulation; Cognition; Clicker training  
  Abstract This paper describes a method in which horses learn to communicate by touching different neutral visual symbols, in order to tell the handler whether they want to have a blanket on or not. Horses were trained for 10-15min per day, following a training program comprising ten steps in a strategic order. Reward based operant conditioning was used to teach horses to approach and touch a board, and to understand the meaning of three different symbols. Heat and cold challenges were performed to help learning and to check level of understanding. At certain stages, a learning criterion of correct responses for 8-14 successive trials had to be achieved before proceeding. After introducing the free choice situation, on average at training day 11, the horse could choose between a “no change” symbol and the symbol for either “blanket on” or “blanket off” depending on whether the horse already wore a blanket or not. A cut off point for performance or non-performance was set to day 14, and 23/23 horses successfully learned the task within this limit. Horses of warm-blood type needed fewer training days to reach criterion than cold-bloods (P<0.05). Horses were then tested under differing weather conditions. Results show that choices made, i.e. the symbol touched, was not random but dependent on weather. Horses chose to stay without a blanket in nice weather, and they chose to have a blanket on when the weather was wet, windy and cold (χ2=36.67, P<0.005). This indicates that horses both had an understanding of the consequence of their choice on own thermal comfort, and that they successfully had learned to communicate their preference by using the symbols. The method represents a novel tool for studying preferences in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6651  
Permanent link to this record
 

 
Author Christensen, J.W.; Munk, R.; Hawson, L.; Palme, R.; Larsen, T.; Egenvall, A.; König von Borstel, U.U.; Rørvang, M.V. url  doi
openurl 
  Title Rider effects on horses' conflict behaviour, rein tension, physiological measures and rideability scores Type Journal Article
  Year 2021 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 234 Issue Pages 105184  
  Keywords Equitation science; Heart rate; Horse riding; Sport horse; Temperament; Training cues  
  Abstract Many breeding organisations include a subjective scoring of rideability by a professional rider into their evaluation of sports horses, but the consistency and reliability of the scoring system is debateable. The aim of this study was to investigate (i) whether professional riders agree in their scoring of rideability, and (ii) whether rideability scores are affected by rein tension, horse conflict behaviour, heart rate, and salivary cortisol, and (iii) whether riders induce different levels of conflict behaviour and physiological responses in the horses. Ten professional, female riders each rode 10 dressage horses (level M German scale; n = 100 combinations) through a standardised dressage test (10 min warm-up followed by a 4-min test) and subsequently scored the horses for rideability on the official 1-10 scale (1 = poor to 10 = excellent) from the Danish Riding Federation. Rein tension, horse heart rate, saliva cortisol and conflict behaviour were measured for each rider-horse pair. The riders were inconsistent in their scoring of rideability to the individual horses, e.g. scores for one of the horses ranged from 1 to 8. There was a significant effect of rider (P = 0.003) and the frequency of conflict behaviour (undesired head movements: P < 0.001, breaking the gait: P = 0.013, and other evasive behaviour: P = 0.032) on rideability scores, i.e. the more conflict behaviour the lower the score. There was no significant effect of rein tension and the physiological measures on rideability scores. However, there was a significant effect of rider on rein tension, horses' heart rate and increases in saliva cortisol concentrations and a tendency for some types of conflict behaviour, suggesting that some riders induced more discomfort in the horses. Future studies could help shed light on which elements of riding style are particularly important for sports horse welfare. In conclusion, this study found a large variation in rideability scores assigned to ten sports horses by ten professional riders. Rideability scores were dependent on the level of horse conflict behaviour, but not rein tension and physiological measures. Further studies are needed to improve the objectivity, consistency and reliability of rideability assessment of sports horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6696  
Permanent link to this record
 

 
Author Billat, L.V. url  openurl
  Title Interval Training for Performance: A Scientific and Empirical Practice: Special Recommendations for Middle- and Long-Distance Running. Part I: Aerobic Interval Training Type Journal Article
  Year 2001 Publication Sports Medicine Abbreviated Journal Sports Med  
  Volume 31 Issue 1 Pages 13-31  
  Keywords Aerobic exercise; Exercise performance; Training  
  Abstract This article traces the history of scientific and empirical interval training. Scientific research has shed some light on the choice of intensity, work duration and rest periods in so-called 'interval training'. Interval training involves repeated short to long bouts of rather high intensity exercise (equal or superior to maximal lactate steady-state velocity) interspersed with recovery periods (light exercise or rest). Interval training was first described by Reindell and Roskamm and was popularised in the 1950s by the Olympic champion, Emil Zatopek. Since then middle- and long- distance runners have used this technique to train at velocities close to their own specific competition velocity. In fact, trainers have used specific velocities from 800 to 5000m to calibrate interval training without taking into account physiological markers. However, outside of the competition season it seems better to refer to the velocities associated with particular physiological responses in the range from maximal lactate steady state to the absolute maximal velocity. The range of velocities used in a race must be taken into consideration, since even world records are not run at a constant pace. Copyright 2001 Adis International  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0112-1642 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 00007256-200131010-00002 Serial 5002  
Permanent link to this record
 

 
Author Schmidt, A.; Aurich, J.; Möstl, E.; Müller, J.; Aurich, C. url  doi
openurl 
  Title Changes in cortisol release and heart rate and heart rate variability during the initial training of 3-year-old sport horses Type Journal Article
  Year 2010 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 58 Issue 4 Pages 628-636  
  Keywords Horse; Initial training; Cortisol; Heart rate variability  
  Abstract Based on cortisol release, a variety of situations to which domestic horses are exposed have been classified as stressors but studies on the stress during equestrian training are limited. In the present study, Warmblood stallions (n = 9) and mares (n = 7) were followed through a 9 respective 12-week initial training program in order to determine potentially stressful training steps. Salivary cortisol concentrations, beat-to-beat (RR) interval and heart rate variability (HRV) were determined. The HRV variables standard deviation of the RR interval (SDRR), RMSSD (root mean square of successive RR differences) and the geometric means standard deviation 1 (SD1) and 2 (SD2) were calculated. Nearly each training unit was associated with an increase in salivary cortisol concentrations (p < 0.01). Cortisol release varied between training units and occasionally was more pronounced in mares than in stallions (p < 0.05). The RR interval decreased slightly in response to lunging before mounting of the rider. A pronounced decrease occurred when the rider was mounting, but before the horse showed physical activity (p < 0.001). The HRV variables SDRR, RMSSD and SD1 decreased in response to training and lowest values were reached during mounting of a rider (p < 0.001). Thereafter RR interval and HRV variables increased again. In contrast, SD2 increased with the beginning of lunging (p < 0.05) and no changes in response to mounting were detectable. In conclusion, initial training is a stressor for horses. The most pronounced reaction occurred in response to mounting by a rider, a situation resembling a potentially lethal threat under natural conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-506x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5223  
Permanent link to this record
 

 
Author Hanggi, E.B. url  doi
openurl 
  Title Discrimination learning based on relative size concepts in horses (Equus caballus) Type Journal Article
  Year 2003 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 83 Issue 3 Pages 201-213  
  Keywords Horse; Concept; Size transposition; Generalization; Learning; Training  
  Abstract This study explored whether or not horses (Equus caballus) could respond to stimuli using a concept based on relative size. In Experiment 1, after learning to respond to the larger of the two stimuli for six sets of two-dimensional (2D) training exemplars, one horse was tested for size transposition that used novel larger and smaller stimuli as well as three-dimensional (3D) objects (5 two-dimensional sets and 5 three-dimensional sets with large, medium, small, and tiny sizes). The horse correctly chose (significantly above chance) the larger of two stimuli regardless of novelty or dimension or combination. In Experiment 2, two additional horses were tested using a subset of the stimuli from Experiment 1. One horse was required to select the larger stimulus--as in Experiment 1--and the other the smaller stimulus. After learning the task, both horses responded correctly to new stimuli and showed size transposition. These results suggest that at least some horses are capable of solving problems based on relative size concepts. Moreover, they are able to generalize across situations that vary from flat, black shapes to objects of different materials and colors including balls, flower pots, and PVC connectors. These findings support earlier research that showed that horses could categorize certain stimuli, and provide new evidence that they are capable of using some form of concept for problem solving. Understanding that horses have more advanced learning abilities than was previously believed should help improve training methods and management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 398  
Permanent link to this record
 

 
Author Saslow, C.A. url  doi
openurl 
  Title Understanding the perceptual world of horses Type Journal Article
  Year 2002 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 78 Issue 2-4 Pages 209-224  
  Keywords Horse; Perception; Vision; Olfaction; Touch; Hearing; Pain; Training; Psychophysics; Umwelt  
  Abstract From the viewpoint of experimental psychology, there are two problems with our current knowledge of equine perception. The first is that the behavioral and neurophysiological research in this area has enormous gaps, reflecting that this animal is not a convenient laboratory subject. The second is that the horse, having been a close companion to humans for many millennia, entrenched anecdotal wisdom is often hard to separate from scientific fact. Therefore, any summary at present of equine perception has to be provisional. The horse appears to have developed a visual system particularly sensitive to dim light and movement, it may or may not have a weak form of color vision in part of the retina, it has little binocular overlap, and its best acuity is limited to a restricted horizontal band which is aimed primarily by head/neck movements. However, the total field of view is very large. Overall, as would be expected for a prey animal, horse vision appears to have evolved more for detection of predator approach from any angle than for accurate visual identification of stationary objects, especially those seen at a distance. It is likely that, as for most mammals except the primates, horses rely more heavily on their other senses for forming a view of their world. Equine high-frequency hearing extends far above that of humans, but horses may be less able to localize the point of origin of brief sounds. The horse's capacity for chemoreception and its reliance on chemical information for identification may more closely resemble that of the dog than of the human. Its tactile sensitivity is high, and the ability of its brain and body to regulate pain perception appears to be similar to that found in other mammals. There is room for a great deal of future research in both the area of equine perception and sensory-based cognition, but for the present time persons interacting with this animal should be made aware of the importance of the sounds they make, the movements of their bodies, the way they touch the animal, and the odors they emit or carry on their clothing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 400  
Permanent link to this record
 

 
Author Nicol, C. J. url  doi
openurl 
  Title Equine learning: progress and suggestions for future research Type Journal Article
  Year 2002 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 78 Issue 2-4 Pages 193-208  
  Keywords Learning; Horse; Equine; Discrimination; Training  
  Abstract Horses are well able to form classical and instrumental associations and so the focus of much recent research has been on the stimulus control of instrumental learning. Horses appear to discriminate using spatial cues more easily than other stimulus features, as indicated both by the speed of initial task acquisition and by the extent to which acquired discriminations can be reversed. Phenomena associated with discrimination learning in laboratory animals, including generalisation and peak shift, have been demonstrated in horses. However, the ability of horses to classify stimuli into categories is more controversial. Although there is some evidence that horses may be able to form categories based on similarities in the physical appearance of different stimuli, there is currently no evidence that they are able to develop abstract concepts. Their performance on social learning tasks has also been poor. Few correlations are observed between the learning ability of individual horses on different tasks, suggesting that it may not be possible to classify individual horses as `good' or `poor' learners. Better learning performance by horses that are naturally calm is probably due to reduced interference in the learning process. Correct handling procedures can lower reactivity levels in horses, and may facilitate learning in some circumstances. Future research on equine learning needs to take into account the complex nature of equine social interaction. Studies on the effects of stress on learning, and on social and spatial cognition, are also particularly needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 405  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print