toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Waal, F.B.M. doi  openurl
  Title Silent invasion: Imanishi's primatology and cultural bias in science Type Journal Article
  Year 2003 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 4 Pages 293-299  
  Keywords Animals; *Behavior, Animal; *Culture; Ecosystem; History, 20th Century; Philosophy; Portraits; *Prejudice; Primates/*psychology; Psychology, Comparative/*history; Research Design/trends  
  Abstract (up)  
  Address Living Links, Yerkes Primate Center, Emory University, Atlanta, GA 30322, USA. dewaal@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14551801 Approved no  
  Call Number refbase @ user @ Serial 178  
Permanent link to this record
 

 
Author Köhler, W. openurl 
  Title Intelligenzprüfungen an Menschenaffen Type Book Whole
  Year 1921 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Animal intelligence , Chimpanzees , Primates , Psychology  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5752  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract (up) Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Müller, A. E.; Thalmann, U. url  openurl
  Title Origin and evolution of primate social organisation: a reconstruction Type Journal Article
  Year 2000 Publication Biological Reviews Abbreviated Journal  
  Volume 75 Issue Pages 405-435  
  Keywords social organisation; evolution; ancestral primate; strepsirhines; nocturnal prosimians; lemurs; lorisiforms; dispersed multi-male system; promiscuity.  
  Abstract (up) Abstract

The evolution and origin of primate social organisation has attracted the attention of many researchers, and a solitary pattern, believed to be present in most nocturnal prosimians, has been generally considered as the most primitive system. Nocturnal prosimians are in fact mostly seen alone during their nightly activities and therefore termed “solitary foragers”, but that does not mean that they are not social. Moreover, designating their social organisation as “solitary”, implies that their way of life is uniform in all species. It has, however, emerged over the last decades that all of them exhibit not only some kind of social network but also that those networks differ among species. There is a need to classify these social networks in the same manner as with group-living (gregarious) animals if we wish to link up the different forms of primate social organisation with ecological, morphological or phylogenetic variables. In this review, we establish a basic classification based on spatial relations and sociality in order to describe and cope properly with the social organisation patterns of the different species of nocturnal prosimians and other mammals that do not forage in cohesive groups. In attempting to trace the ancestral pattern of primate social organisation, the Malagasy mouse and dwarf lemurs and the Afro-Asian bushbabies and lorises are of special interest because they are thought to approach the ancestral conditions most closely. These species have generally been believed to exhibit a dispersed harem system as their pattern of social organisation (“dispersed” means that individuals forage solitarily but exhibit a social network). Therefore, the ancestral pattern of primate social organisation was inferred to be a dispersed harem. In fact, new field data on cheirogaleids combined with a review of patterns of social organisation in strepsirhines (lemurs, bushbabies and lorises) revealed that they exhibit either dispersed multi-male systems or dispersed monogamy rather than a dispersed harem system. Therefore, the concept of a dispersed harem system as the ancestral condition of primate social organisation can no longer be supported. In combination with data on social organisation patterns in “primitive” placentals and marsupials, and in monotremes, it is in fact most probable that promiscuity is the ancestral pattern for mammalian social organisation. Subsequently, a dispersed multi-male system derived from promiscuity should be regarded as the ancestral condition for primates. We further suggest that the gregarious patterns of social organisation in Aotus and Avahi, and the dispersed form in Tarsius evolved from the gregarious patterns of diurnal primates rather than from the dispersed nocturnal type. It is consequently proposed that, in addition to Aotus and Tarsius, Avahi is also secondarily nocturnal.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4257  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract (up) Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Janson, C.; Byrne, R. url  doi
openurl 
  Title What wild primates know about resources: opening up the black box Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 3 Pages 357-367  
  Keywords Cognitive map – Primate – Foraging – Ecology – Psychology  
  Abstract (up) Abstract  We present the theoretical and practical difficulties of inferring the cognitive processes involved in spatial movement decisions of primates and other animals based on studies of their foraging behavior in the wild. Because the possible cognitive processes involved in foraging are not known a priori for a given species, some observed spatial movements could be consistent with a large number of processes ranging from simple undirected search processes to strategic goal-oriented travel. Two basic approaches can help to reveal the cognitive processes: (1) experiments designed to test specific mechanisms; (2) comparison of observed movements with predicted ones based on models of hypothesized foraging modes (ideally, quantitative ones). We describe how these two approaches have been applied to evidence for spatial knowledge of resources in primates, and for various hypothesized goals of spatial decisions in primates, reviewing what is now established. We conclude with a synthesis emphasizing what kinds of spatial movement data on unmanipulated primate populations in the wild are most useful in deciphering goal-oriented processes from random processes. Basic to all of these is an estimate of the animals ability to detect resources during search. Given knowledge of the animals detection ability, there are several observable patterns of resource use incompatible with a pure search process. These patterns include increasing movement speed when approaching versus leaving a resource, increasingly directed movement toward more valuable resources, and directed travel to distant resources from many starting locations. Thus, it should be possible to assess and compare spatial cognition across a variety of primate species and thus trace its ecological and evolutionary correlates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4214  
Permanent link to this record
 

 
Author Sawaguchi, T.; Kudo, H. url  doi
openurl 
  Title Neocortical development and social structure in primates Type Journal Article
  Year 1990 Publication Primates Abbreviated Journal Primates  
  Volume 31 Issue 2 Pages 283-289  
  Keywords Neocortex – Relative size – Allometry – Congeneric group – Social structure – Monogyny – Polygyny – Primates  
  Abstract (up) Abstract  The relationships between the relative size of the neocortex and differences in social structures were examined in prosimians and anthropoids. The relative size of the neocortex (RSN) of a given congeneric group in each superfamily of primates was measured based on the allometric relationships between neocortical volume and brain weight for each superfamily, to control phylogenetic affinity and the effects of brain size. In prosimians, “troop-making†congeneric groups (N=3) revealed a significantly larger RSN than solitary groups (N=6), and there was a significant, positive correlation between RSN and troop size. In the case of anthropoids, polygynous/frugivorous groups (N=5) revealed a significantly larger RSN than monogynous/frugivorous groups (N=8). Furthermore, a significant, positive correlation between RSN and troop size was found for frugivorous congeneric groups of the Ceboidea. These results suggest that neocortical development is associated with differences in social structure among primates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4799  
Permanent link to this record
 

 
Author de Waal, F.B.M. openurl 
  Title Darwin's legacy and the study of primate visual communication Type Journal Article
  Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1000 Issue Pages 7-31  
  Keywords Affect; Aggression/psychology; Animals; Culture; *Evolution; *Facial Expression; Gestures; Grooming; Humans; Laughter; *Nonverbal Communication; Primates/*physiology; Smiling; *Visual Perception  
  Abstract (up) After Charles Darwin's The Expression of the Emotions in Man and Animals, published in 1872, we had to wait 60 years before the theme of animal expressions was picked up by another astute observer. In 1935, Nadezhda Ladygina-Kohts published a detailed comparison of the expressive behavior of a juvenile chimpanzee and of her own child. After Kohts, we had to wait until the 1960s for modern ethological analyses of primate facial and gestural communication. Again, the focus was on the chimpanzee, but ethograms on other primates appeared as well. Our understanding of the range of expressions in other primates is at present far more advanced than that in Darwin's time. A strong social component has been added: instead of focusing on the expressions per se, they are now often classified according to the social situations in which they typically occur. Initially, quantitative analyses were sequential (i.e., concerned with temporal associations between behavior patterns), and they avoided the language of emotions. I will discuss some of this early work, including my own on the communicative repertoire of the bonobo, a close relative of the chimpanzee (and ourselves). I will provide concrete examples to make the point that there is a much richer matrix of contexts possible than the common behavioral categories of aggression, sex, fear, play, and so on. Primate signaling is a form of negotiation, and previous classifications have ignored the specifics of what animals try to achieve with their exchanges. There is also increasing evidence for signal conventionalization in primates, especially the apes, in both captivity and the field. This process results in group-specific or “cultural” communication patterns.  
  Address Yerkes Primate Center, and Psychology Department, Emory University, Atlanta, Georgia 30322, USA. dewaal@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14766618 Approved no  
  Call Number refbase @ user @ Serial 177  
Permanent link to this record
 

 
Author Cantlon, J.F.; Brannon, E.M. url  openurl
  Title How Much Does Number Matter to a Monkey (Macaca mulatta)? Type Journal Article
  Year 2007 Publication Journal of Experimental Psychology: Animal Behavior Processes Abbreviated Journal  
  Volume 33 Issue 1 Pages 32-41  
  Keywords numerical cognition; Weber's law; nonhuman primates; numerosity  
  Abstract (up) Although many animal species can represent numerical values, little is known about how salient number is relative to other object properties for nonhuman animals. In one hypothesis, researchers propose that animals represent number only as a last resort, when no other properties differentiate stimuli. An alternative hypothesis is that animals automatically, spontaneously, and routinely represent the numerical attributes of their environments. The authors compared the influence of number versus that of shape, color, and surface area on rhesus monkeys' (Macaca mulatta) decisions by testing them on a matching task with more than one correct answer: a numerical match and a nonnumerical (color, surface area, or shape) match. The authors also tested whether previous laboratory experience with numerical discrimination influenced a monkey's propensity to represent number. Contrary to the last-resort hypothesis, all monkeys based their decisions on numerical value when the numerical ratio was favorable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2891  
Permanent link to this record
 

 
Author Defolie, C.; Malassis, R.; Serre, M.; Meunier, H. url  doi
openurl 
  Title Tufted capuchins (Cebus apella) adapt their communicative behaviour to human’s attentional states Type Journal Article
  Year 2015 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 18 Issue 3 Pages 747-755  
  Keywords Gestural communication; Intentionality; Non-human primates; Social cognition; Attention; Pointing  
  Abstract (up) Animal communication has become a widely studied field of research, especially because of the associated debates on the origin of human language. Due to their phylogenetic proximity with humans, non-human primates represent a suitable model to investigate the precursors of language. This study focuses on the perception of the attentional states of others, an important prerequisite to intentional communication. We investigated whether capuchins (Cebus apella) produce a learnt pointing gesture towards a hidden and unreachable food reward as a function of the attentional status of the human experimenter. For that purpose, we tested five subjects that we first trained to indicate by a pointing gesture towards the human partner the position of a reward hidden by an assistant. Then, capuchins were tested in two experimental conditions randomly ordered. In the first condition—motivation trial—the experimenter was attentive to the subject gestures and rewarded him immediately when it pointed towards the baited cylinder. During the second condition—test trial—the experimenter adopted one of the following attention states and the subject was rewarded after 10 s has elapsed, regardless of the subject’s behaviour. Five attentional states were tested: (1) experimenter absent, (2) experimenter back to the monkey, (3) experimenter’s head away, (4) experimenter watching above the monkey, and (5) experimenter watching the monkey face. Our results reveal a variation in our subjects’ communicative behaviours with a discrimination of the different postural clues (body and head orientation) available in our experimental conditions. This study suggests that capuchins can flexibly use a communicative gesture to adapt to the attentional state of their partner and provides evidence that acquired communicative gestures of monkeys might be used intentionally.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5886  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print