toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McGuigan, M.P.; Wilson, A.M. openurl 
  Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
  Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal (up) J Exp Biol  
  Volume 206 Issue Pt 8 Pages 1325-1336  
  Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running  
  Abstract A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.  
  Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12624168 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3655  
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M. doi  openurl
  Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
  Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal (up) J Exp Biol  
  Volume 207 Issue Pt 21 Pages 3639-3648  
  Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors  
  Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.  
  Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15371472 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3658  
Permanent link to this record
 

 
Author Lagarde, J.; Kelso, J.A.S.; Peham, C.; Licka, T. openurl 
  Title Coordination dynamics of the horse-rider system Type Journal Article
  Year 2005 Publication Journal of Motor Behavior Abbreviated Journal (up) J Mot Behav  
  Volume 37 Issue 6 Pages 418-424  
  Keywords Animals; Biomechanics; *Horses; Humans; Professional Competence; Psychomotor Performance/*physiology; *Sports; Time Factors  
  Abstract The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice's movements displayed transient departures from phase synchrony, the expert's motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them.  
  Address Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431-771, USA. lagarde@ccs.fau.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2895 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16280312 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4034  
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J. doi  openurl
  Title Horses damp the spring in their step Type Journal Article
  Year 2001 Publication Nature Abbreviated Journal (up) Nature  
  Volume 414 Issue 6866 Pages 895-899  
  Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration  
  Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.  
  Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11780059 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2300  
Permanent link to this record
 

 
Author Real, L.A. openurl 
  Title Animal choice behavior and the evolution of cognitive architecture Type Journal Article
  Year 1991 Publication Science (New York, N.Y.) Abbreviated Journal (up) Science  
  Volume 253 Issue 5023 Pages 980-986  
  Keywords Animals; Bees/genetics/*physiology; Biomechanics; *Choice Behavior; *Cognition; *Evolution; Mathematics; Models, Genetic; Probability  
  Abstract Animals process sensory information according to specific computational rules and, subsequently, form representations of their environments that form the basis for decisions and choices. The specific computational rules used by organisms will often be evolutionarily adaptive by generating higher probabilities of survival, reproduction, and resource acquisition. Experiments with enclosed colonies of bumblebees constrained to foraging on artificial flowers suggest that the bumblebee's cognitive architecture is designed to efficiently exploit floral resources from spatially structured environments given limits on memory and the neuronal processing of information. A non-linear relationship between the biomechanics of nectar extraction and rates of net energetic gain by individual bees may account for sensitivities to both the arithmetic mean and variance in reward distributions in flowers. Heuristic rules that lead to efficient resource exploitation may also lead to subjective misperception of likelihoods. Subjective probability formation may then be viewed as a problem in pattern recognition subject to specific sampling schemes and memory constraints.  
  Address Department of Biology, University of North Carolina, Chapel Hill 27599-3280  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1887231 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2846  
Permanent link to this record
 

 
Author Powers, P.; Harrison, A. openurl 
  Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
  Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal (up) Sports Biomech  
  Volume 1 Issue 2 Pages 135-146  
  Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology  
  Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.  
  Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-3141 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14658371 Approved no  
  Call Number Serial 1904  
Permanent link to this record
 

 
Author Sloet van Oldruitenborgh-Oosterbaan, M.M.; Blok, M.B.; Begeman, L.; Kamphuis, M.C.D.; Lameris, M.C.; Spierenburg, A.J.; Lashley, M.J.J.O. url  openurl
  Title Workload and stress in horses: comparison in horses ridden deep and round ('rollkur') with a draw rein and horses ridden in a natural frame with only light rein contact Type Journal Article
  Year 2006 Publication Tijdschrift Voor Diergeneeskunde Abbreviated Journal (up) Tijdschr Diergeneeskd  
  Volume 131 Issue 5 Pages 152-157  
  Keywords Animal Husbandry/methods; Animals; Biomechanics; Blood Glucose/analysis; Female; Heart Rate/physiology; Hematocrit/veterinary; Horses/blood/*physiology; Hydrocortisone/blood; Lactic Acid/blood; Physical Conditioning, Animal/adverse effects/*physiology; Stress, Physiological/blood/etiology/veterinary  
  Abstract 'Rollkur' or 'overbending' is the low and deep riding of a dressage horse during training or warming up. Lately, this technique has been criticized, and not necessarily objectively, on welfare grounds. To be able to evaluate these criticisms, more needs to be known about the workload and stress of horses being ridden 'rollkur'. The aim of the present study was to compare the workload of eight riding-school horses when being ridden deep and round with a draw rein ('rollkur') and when being ridden in a natural frame with only light rein contact ('free'). Workload (as measured by heart rate and blood lactate concentration) was slightly higher when horses were ridden 'rollkur' than when they were ridden 'free'. There were no differences in packed cell volume, or glucose and cortisol concentrations. No signs of uneasiness or stress could be determined when the horses were ridden 'rollkur'. Subjectively, all horses improved their way of moving during 'rollkur' and were more responsive to their rider.  
  Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, 3584 CM Utrecht, The Netherlands. m.sloet@vet.uu.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-7453 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16532786 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5638  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print