|
Abstract |
ABSTRACT: BACKGROUND: Researchers have developed a variety of techniques for the visual presentation of quantitative data. These techniques can help to reveal trends and regularities that would be difficult to see if the data were left in raw form. Such techniques can be of great help in exploratory data analysis, making apparent the organization of data sets, developing new hypotheses, and in selecting effects to be tested by statistical analysis. Researchers studying social interaction in groups of animals and humans, however, have few tools to present their raw data visually, and it can be especially difficult to perceive patterns in these data. In this paper I introduce a new graphical method for the visual display of interaction records in human and animal groups, and I illustrate this method using data taken on chickens forming dominance hierarchies. RESULTS: This new method presents data in a way that can help researchers immediately to see patterns and connections in long, detailed records of interaction. I show a variety of ways in which this new technique can be used: (1) to explore trends in the formation of both group social structures and individual relationships; (2) to compare interaction records across groups of real animals and between real animals and computer-simulated animal interactions; (3) to search for and discover new types of small-scale interaction sequences; and (4) to examine how interaction patterns in larger groups might emerge from those in component subgroups. In addition, I discuss how this method can be modified and extended for visualizing a variety of different kinds of social interaction in both humans and animals. CONCLUSION: This method can help researchers develop new insights into the structure and organization of social interaction. Such insights can make it easier for researchers to explain behavioural processes, to select aspects of data for statistical analysis, to design further studies, and to formulate appropriate mathematical models and computer simulations. |
|