|
Abstract |
The two sides of the brain may be differently involved in the modulation of immune responses as demonstrated by lesional and behavioral approaches in rodents. Lesions of right or left neocortex induced opposite effects on various immune parameters including mitogen-induced lymphoproliferation, interleukin-2 production, macrophage activation or natural killer cell activity. This animal model, useful to elucidate whereby the brain and the immune system can communicate, appears to be suitable for studying the immune perturbations observed during stroke in humans. Brain asymmetry in modulation of immune reactivity may also be demonstrated in intact animal using a behavioral paradigm. The direction of a lateralized motor behavior ie paw preference in a food reaching task, correlated with an asymmetrical brain organization, was shown to be associated with lymphocyte reactivity, natural killer cell activity and auto-antibody production. The association between paw preference and immune reactivity in mice varies according to the immune parameters tested and is a sex-dependent phenomenon in which genetic background may be involved. The experimental models for investigating asymmetrical brain modulation of the immune system should be useful for studying several physiological, pathological and genetic aspects of neuroimmunomodulation. |
|