|
Abstract |
We tested the responses of Bufo marinus to prey stimuli of varying visual complexity that were moved around the toads in either a clockwise or anticlockwise direction at 1.7 revolutions/min. Predatory responses directed at prey resembling an insect were frequent when the model insect moved clockwise across the visual midline into the right visual hemifield. In contrast, the toads tended to ignore such stimuli when they moved anticlockwise across the midline into the left hemifield. No such lateralization was found when a rectangular strip moved along its longest axis was presented in a similar way. The toads also directed more responses towards the latter stimulus than towards the insect prey. Hence, the results suggest that lateralized predatory responses occur for considered decisions on whether or not to respond to complex insect-like stimuli, but not for decisions on comparatively simple stimuli. We discuss similarities between the lateralized feeding responses of B. marinus and those of avian species, as support for the hypothesis that lateralized brain function in tetrapods may have arisen from a common lateralized ancestor. |
|