toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Hostikka, S.L.; Eddy, R.L.; Byers, M.G.; Hoyhtya, M.; Shows, T.B.; Tryggvason, K. url  doi
openurl 
  Title Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome Type Journal Article
  Year 1990 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 87 Issue 4 Pages 1606-1610  
  Keywords Amino Acid Sequence; Base Sequence; Chromosome Mapping; Cloning, Molecular; Collagen/*genetics; Epitopes/analysis; Female; Fluorescent Antibody Technique; Gene Library; *Genes; Humans; Immunoblotting; Kidney/cytology/*metabolism; Macromolecular Substances; Molecular Sequence Data; Nephritis, Hereditary/*genetics; Oligopeptides/chemical synthesis/immunology; Placenta/metabolism; Pregnancy; Restriction Mapping; Sequence Homology, Nucleic Acid; *X Chromosome  
  Abstract We have identified and extensively characterized a type IV collagen alpha chain, referred to as alpha 5(IV). Four overlapping cDNA clones isolated contain an open reading frame for 543 amino acid residues of the carboxyl-terminal end of a collagenous domain, a 229-residue carboxyl-terminal noncollagenous domain, and 1201 base pairs coding for a 3' untranslated region. The collagenous Gly-Xaa-Yaa repeat sequence has five imperfections that coincide with those in the corresponding region of the alpha 1(IV) chain. The noncollagenous domain has 12 conserved cysteine residues and 83% and 63% sequence identity with the noncollagenous domains of the alpha 1(IV) and alpha 2(IV) chains, respectively. The alpha 5(IV) chain has less sequence identity with the putative bovine alpha 3(IV) and alpha 4(IV) chains. Antiserum against an alpha 5(IV) synthetic peptide stained a polypeptide chain of about 185 kDa by immunoblot analysis and immunolocalization of the chain in human kidney was almost completely restricted to the glomerulus. The gene was assigned to the Xq22 locus by somatic cell hybrids and in situ hybridization. This may be identical or close to the locus of the X chromosome-linked Alport syndrome that is believed to be a type IV collagen disease.  
  Address Biocenter, University of Oulu, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1689491 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print