toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ecker, C.; Marquand, A.; Mourao-Miranda, J.; Johnston, P.; Daly, E.M.; Brammer, M.J.; Maltezos, S.; Murphy, C.M.; Robertson, D.; Williams, S.C.; Murphy, D.G.M. url  doi
openurl 
  Title Describing the Brain in Autism in Five Dimensions--Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach Type Journal Article
  Year 2010 Publication J. Neurosci. Abbreviated Journal J. Neurosci.  
  Volume 30 Issue 32 Pages 10612-10623  
  Keywords  
  Abstract Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 10.1523/Jneurosci.5413-09.2010 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print