|
Abstract |
The aim of this comparative study was to gain more information about the excretion of steroid hormones in farm animals. This should help to establish or improve non-invasive steroid monitoring procedures, especially in zoo and wildlife animals. Over a period of 4 h the 14C-steroid hormones (3.7 MBq) progesterone (three females), testosterone (three males), cortisol and oestrone (two males, two females) were infused intravenously in sheep, ponies and pigs. Faeces were collected immediately after defecation. Urine was sampled via a permanent catheter in females and after spontaneous urination in males. A total of 88 +/- 10% (mean +/- SD) of the administered radioactivity was recovered. Considerable interspecies differences were measured both in the amounts of steroid metabolites excreted via faeces or urine and the time course of excretion. Progesterone and oestrone in ewes, and progesterone in mares were excreted mainly in the faeces (over 75%). The primary route of excretion of all other 14C-steroids was via the urine but to a different extent. In general, sheep showed the highest degree of faecal excretion and pigs the least. The highest radioactivity in urine (per mmol creatinine) was observed during the infusion or in one of the next two samples thereafter, whereas in faeces it was measured about 12 h (sheep), 24 h (ponies) or 48 h (pigs) after the end of the infusion. Thereafter the radioactivity declined and reached background levels within 2-3 weeks. In faeces, steroid metabolites were present mainly in an unconjugated form, but in blood and urine as conjugates. Mean retention time of faecal radioactivity suggested that the passage rate of digesta (duodenum to rectum) played an important role in the time course of the excretion of steroids. The information derived from this investigation could improve the precision of sampling as well as the extraction of steroids from the faeces. Furthermore, the study demonstrates that it should be possible to establish methods for measuring faecal androgen and cortisol metabolites for assessing male reproductive endocrinology and stress in animals. |
|