|
Bast, T. F., Whitney, E., & Benach, J. L. (1973). Considerations on the ecology of several arboviruses in eastern Long Island. Am J Trop Med Hyg, 22(1), 109–115.
|
|
|
Brennan, J., & Anderson, J. (1988). Varying responses to feeding competition in a group of rhesus monkeys (Macaca mulatta). Primates, 29(3), 353–360.
Abstract: The behaviour of members of a group of rhesus monkeys was observed in experimentally created, competitive feeding situations. Socially dominant members of the group tended to start eating before lower-ranking subjects, and generally ate more. Dominants sometimes used aggression to control access to food, but overall, intermediate-ranking monkeys were involved in most agonistic episodes. Non-dominant subjects improved their feeding performance when food was presented in three piles rather than one pile, often by snatching food and consuming it away from the pile. These general patterns were less evident when realistic snake models were placed on some of the food piles. Feeding was disrupted by the presence of snakes, but notably, subordinates risked feeding in these conditions. Piles containing preferred foods and snakes were eaten from, but a low-preference food (carrot) under snakes went untouched by all subjects. The results suggest that group-members evaluate potential risks and benefits of competing for a restricted resource, and that dominance status, while an important factor, is only one element in the equation.
|
|
|
Cook, M., Mineka, S., Wolkenstein, B., & Laitsch, K. (1985). Observational conditioning of snake fear in unrelated rhesus monkeys. J Abnorm Psychol, 94(4), 591–610.
|
|
|
Hamilton, W. D. (1971). Geometry for the selfish herd. J. Theor. Biol., 31(2), 295–311.
Abstract: This paper presents an antithesis to the view that gregarious behaviour is evolved through benefits to the population or species. Following Galton (1871) and Williams (1964) gregarious behaviour is considered as a form of cover-seeking in which each animal tries to reduce its chance of being caught by a predator.
It is easy to see how pruning of marginal individuals can maintain centripetal instincts in already gregarious species; some evidence that marginal pruning actually occurs is summarized. Besides this, simply defined models are used to show that even in non-gregarious species selection is likely to favour individuals who stay close to others.
Although not universal or unipotent, cover-seeking is a widespread and important element in animal aggregation, as the literature shows. Neglect of the idea has probably followed from a general disbelief that evolution can be dysgenic for a species. Nevertheless, selection theory provides no support for such disbelief in the case of species with outbreeding or unsubdivided populations.
The model for two dimensions involves a complex problem in geometrical probability which has relevance also in metallurgy and communication science. Some empirical data on this, gathered from random number plots, is presented as of possible heuristic value.
|
|
|
Nelson, E. E., Shelton, S. E., & Kalin, N. H. (2003). Individual differences in the responses of naive rhesus monkeys to snakes. Emotion, 3(1), 3–11.
Abstract: The authors demonstrated individual differences in inhibited behavior and withdrawal responses of laboratory-born rhesus monkeys when initially exposed to a snake. Most monkeys displayed a small significant increase in their behavioral inhibition in the presence of a snake. A few monkeys had marked responses, and some actively withdrew. Although the responses of the most extreme laboratory-born monkeys were comparable to feral-born monkeys, the responses of the laboratory-born monkeys rapidly habituated. The individual differences in the responses of naive monkeys likely reflect a continuum from orienting to wariness to fear. A neurobiological model is presented that addresses potential mechanisms underlying these individual differences, their relation to fear, and how they may predispose to phobia development.
|
|