|
Baum, M. J. (2006). Mammalian animal models of psychosexual differentiation: when is 'translation' to the human situation possible? Horm Behav, 50(4), 579–588.
Abstract: Clinical investigators have been forced primarily to use experiments of nature (e.g., cloacal exstrophy; androgen insensitivity, congenital adrenal hyperplasia) to assess the contribution of fetal sex hormone exposure to the development of male- and female-typical profiles of gender identity and role behavior as well as sexual orientation. In this review, I summarize the results of numerous correlative as well as mechanistic animal experiments that shed significant light on general neuroendocrine mechanisms controlling the differentiation of neural circuits controlling sexual partner preference (sexual orientation) in mammalian species including man. I also argue, however, that results of animal studies can, at best, provide only indirect insights into the neuroendocrine determinants of human gender identity and role behaviors.
|
|
|
Beaver, B. V. (1986). Aggressive behavior problems. Vet Clin North Am Equine Pract, 2(3), 635–644.
Abstract: Accurate diagnosis of the cause of aggression in horses is essential to determining the appropriate course of action. The affective forms of aggression include fear-induced, pain-induced, intermale, dominance, protective, maternal, learned, and redirected aggressions. Non-affective aggression includes play and sex-related forms. Irritable aggression and hypertestosteronism in mares are medical problems, whereas genetic factors, brain dysfunction, and self-mutilation are also concerns.
|
|
|
Berger, J. (1983). Induced abortion and social factors in wild horses. Nature, 303(5912), 59–61.
Abstract: Much evidence now suggests that the postnatal killing of young in primates and carnivores, and induced abortions in some rodents, are evolved traits exerting strong selective pressures on adult male and female behaviour. Among ungulates it is perplexing that either no species have developed convergent tactics or that these behaviours are not reported, especially as ungulates have social systems similar to those of members of the above groups. Only in captive horses (Equus caballus) has infant killing been reported. It has been estimated that 40,000 wild horses live in remote areas of the Great Basin Desert of North America (US Department of Interior (Bureau of Land Management), unpublished report), where they occur in harems (females and young) defended by males. Here I present evidence that, rather than killing infants directly, invading males induce abortions in females unprotected by their resident stallions and these females are then inseminated by the new males.
|
|
|
Boyd, L. (1986). Behavior problems of equids in zoos. Vet Clin North Am Equine Pract, 2(3), 653–664.
Abstract: Behavior problems in zoo equids commonly result from a failure to provide for needs basic to equine nature. Equids are gregarious, and failure to provide companions may result in pacing. Wild equids spend 60 to 70 per cent of their time grazing, and failure to provide ad libitum roughage contributes to the problems of pacing, cribbing, wood chewing, and coprophagia. Mimicking the normal processes of juvenile dispersal, bachelor-herd formation, and mate acquisition reduces the likelihood of agonistic and reproductive behavior problems. Infanticide can be avoided by introducing new stallions to herds containing only nonpregnant mares and older foals.
|
|
|
Brazas, M. L., & Shimizu, T. (2002). Significance of visual cues in choice behavior in the female zebra finch (Taeniopygia guttata castanotis). Anim. Cogn., 5(2), 91–95.
Abstract: Female zebra finches show a preference for male zebra finches over heterospecific males based solely on the auditory cues of males, such as songs. The present study was designed to investigate whether females show a similar preference for male zebra finches based solely on visual cues. Using a Y-maze apparatus, social preference of female zebra finches was studied between male zebra finches and male Bengalese finches in three experiments. In experiment 1, where female zebra finches could see and hear live male zebra finches and male Bengalese finches, the females preferred to associate with the male zebra finches. In experiment 2, using a sound-attenuated experimental apparatus, subjects could see, but not hear, male zebra finches and male Bengalese finches. The subjects did not show a significant preference for associating with zebra finches. In experiment 3, as in experiment 2, females could see live male zebra finches and male Bengalese finches in the sound-attenuated chambers. However, in experiment 3, the subjects also heard prerecorded auditory cues (i.e., songs and calls) of male zebra finches, which were presented simultaneously in both arms of the maze. Although the females could not use the auditory cues to identify the location of the male zebra finches, they preferred to associate with the male zebra finches rather than the male Bengalese finches. These results suggest that visual cues alone were effective in initiating choice behaviors by females and that auditory cues facilitate such visually based choice behaviors.
|
|
|
Brennan, P. A. (2004). The nose knows who's who: chemosensory individuality and mate recognition in mice. Horm Behav, 46(3), 231–240.
Abstract: Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.
|
|
|
Cancedda, M. (1990). [Social and behavioral organization of horses on the Giara (Sardinia): distribution and aggregation]. Boll Soc Ital Biol Sper, 66(11), 1089–1096.
Abstract: In this paper some considerations on the environment of the 42 Kmq of the volcanic-basaltic Giara tableland are discussed. Conditioning by the environment and its effect on the distribution of a population of 712 horses is illustrated in view of their social and behavioural organization.
|
|
|
Collery, L. (1974). Observations of equine animals under farm and feral conditions. Equine Vet J, 6(4), 170–173.
|
|
|
Danchin, E., Giraldeau, L. - A., Valone, T. J., & Wagner, R. H. (2004). Public information: from nosy neighbors to cultural evolution. Science, 305(5683), 487–491.
Abstract: Psychologists, economists, and advertising moguls have long known that human decision-making is strongly influenced by the behavior of others. A rapidly accumulating body of evidence suggests that the same is true in animals. Individuals can use information arising from cues inadvertently produced by the behavior of other individuals with similar requirements. Many of these cues provide public information about the quality of alternatives. The use of public information is taxonomically widespread and can enhance fitness. Public information can lead to cultural evolution, which we suggest may then affect biological evolution.
|
|
|
de Waal, F. B. (1995). Bonobo sex and society. Sci Am, 272(3), 82–88.
|
|