|
Baum, M. J. (2006). Mammalian animal models of psychosexual differentiation: when is 'translation' to the human situation possible? Horm Behav, 50(4), 579–588.
Abstract: Clinical investigators have been forced primarily to use experiments of nature (e.g., cloacal exstrophy; androgen insensitivity, congenital adrenal hyperplasia) to assess the contribution of fetal sex hormone exposure to the development of male- and female-typical profiles of gender identity and role behavior as well as sexual orientation. In this review, I summarize the results of numerous correlative as well as mechanistic animal experiments that shed significant light on general neuroendocrine mechanisms controlling the differentiation of neural circuits controlling sexual partner preference (sexual orientation) in mammalian species including man. I also argue, however, that results of animal studies can, at best, provide only indirect insights into the neuroendocrine determinants of human gender identity and role behaviors.
|
|
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Caldwell, C. A., & Whiten, A. (2002). Evolutionary perspectives on imitation: is a comparative psychology of social learning possible? Anim. Cogn., 5(4), 193–208.
Abstract: Studies of imitation in animals have become numerous in recent times, but do they contribute to a comparative psychology of social learning? We review this burgeoning field to identify the problems and prospects for such a goal. Difficulties of two main kinds are identified. First, researchers have tackled questions about social learning from at least three very different theoretical perspectives, the “phylogenetic”, “animal model”, and “adaptational”. We examine the conflicts between them and consider the scope for integration. A second difficulty arises in the methodological approaches used in the discipline. In relation to one of these – survey reviews of published studies – we tabulate and compare the contrasting conclusions of nine articles that together review 36 studies. The basis for authors' disagreements, including the matters of perceptual opacity, novelty, sequential structure, and goal representation, are examined. In relation to the other key method, comparative experimentation, we identify 12 studies that have explicitly compared species' imitative ability on similar tasks. We examine the principal problems of comparing like with like in these studies and consider solutions, the most powerful of which we propose to be the use of a systematic range of task designs, rather than any single “gold standard” task.
|
|
|
Cowell, P. E., Fitch, R. H., & Denenberg, V. H. (1999). Laterality in animals: relevance to schizophrenia. Schizophr Bull, 25(1), 41–62.
Abstract: Anomalies in the laterality of numerous neurocognitive dimensions associated with schizophrenia have been documented, but their role in the etiology and early development of the disorder remain unclear. In the study of normative neurobehavioral organization, animal models have shed much light on the mechanisms underlying and the factors affecting adult patterns of both functional and structural asymmetry. Nonhuman species have more recently been used to investigate the environmental, genetic, and neuroendocrine factors associated with developmental language disorders in humans. We propose that the animal models used to study the basis of lateralization in normative development and language disorders such as dyslexia could be modified to investigate lateralized phenomena in schizophrenia.
|
|
|
Harman, F. S., Nicol, C. J., Marin, H. E., Ward, J. M., Gonzalez, F. J., & Peters, J. M. (2004). Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis. Nat Med, 10(5), 481–483.
Abstract: Peroxisome proliferator-activated receptor-delta (PPAR-delta; also known as PPAR-beta) is expressed at high levels in colon tumors, but its contribution to colon cancer is unclear. We examined the role of PPAR-delta in colon carcinogenesis using PPAR-delta-deficient (Ppard(-/-)) mice. In both the Min mutant and chemically induced mouse models, colon polyp formation was significantly greater in mice nullizygous for PPAR-delta. In contrast to previous reports suggesting that activation of PPAR-delta potentiates colon polyp formation, here we show that PPAR-delta attenuates colon carcinogenesis.
|
|
|
Milinovich, G. J., Trott, D. J., Burrell, P. C., van Eps, A. W., Thoefner, M. B., Blackall, L. L., et al. (2006). Changes in equine hindgut bacterial populations during oligofructose-induced laminitis. Environ Microbiol, 8(5), 885–898.
Abstract: In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.
|
|
|
Pennisi, E. (1997). Schizophrenia clues from monkeys (Vol. 277).
|
|
|
Sarter, M. (2004). Animal cognition: defining the issues. Neurosci Biobehav Rev, 28(7), 645–650.
Abstract: The assessment of cognitive functions in rodents represents a critical experimental variable in many research fields, ranging from the basic cognitive neurosciences to psychopharmacology and neurotoxicology. The increasing use of animal behavioral tests as 'assays' for the assessment of effects on learning and memory has resulted in a considerable heterogeneity of data, particularly in the field of behavioral and psycho pharmacology. The limited predictive validity of changes in behavioral performance observed in standard animal tests of learning and memory indicates that a renewed effort to scrutinize the validity of these tests is warranted. In humans, levels of processing (effortful vs. automatic) and categories of information (procedural vs. episodic/declarative) are important variables of cognitive operations. The design of tasks that assess the recall of 'episodic' or 'declarative' information appears to represent a particular challenge for research using laboratory rodents. For example, the hypothesis that changes in inspection time for a previously encountered place or object are based on the recall of declarative/episodic information requires substantiation. In order to generalize findings on the effects of neuronal or pharmacological manipulations on learning and memory, obtained from one species and one task, to other species and other tasks, the mediating role of important sets of variables which influence learning and memory (e.g. attentional, affective) needs to be determined. Similar to the view that a neuronal manipulation (e.g. a lesion) represents a theory of the condition modeled (e.g. a degenerative disorder), an animal behavioral task represents a theory of the behavioral/cognitive process of interest. Therefore, the test of hypotheses regarding the validity of procedures used to assess cognitive functions in animals is an inherent part of the research process.
|
|
|
Touma, C., Palme, R., & Sachser, N. (2004). Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones. Horm Behav, 45(1), 10–22.
Abstract: In small animals like mice, the monitoring of endocrine functions over time is constrained seriously by the adverse effects of blood sampling. Therefore, noninvasive techniques to monitor, for example, stress hormones in these animals are highly demanded in laboratory as well as in field research. The aim of our study was to evaluate the biological relevance of a recently developed technique to monitor stress hormone metabolites in fecal samples of laboratory mice. In total, six experiments were performed using six male and six female mice each. Two adrenocorticotropic hormone (ACTH) challenge tests, two dexamethasone (Dex) suppression tests and two control experiments [investigating effects of the injection procedure itself and the diurnal variation (DV) of glucocorticoids (GCs), respectively] were conducted. The experiments clearly demonstrated that pharmacological stimulation and suppression of adrenocortical activity was reflected accurately by means of corticosterone metabolite (CM) measurements in the feces of males and females. Furthermore, the technique proved sensitive enough to detect dosage-dependent effects of the ACTH/Dex treatment and facilitated to reveal profound effects of the injection procedure itself. Even the naturally occurring DV of GCs could be monitored reliably. Thus, our results confirm that measurement of fecal CM with the recently established 5alpha-pregnane-3beta,11beta,21-triol-20-one enzyme immunoassay is a very powerful tool to monitor adrenocortical activity in laboratory mice. Since mice represent the vast majority of all rodents used for research worldwide and the number of transgenic and knockout mice utilized as animal models is still increasing, this noninvasive technique can open new perspectives in biomedical and behavioral science.
|
|
|
Williams, D. O., Boatwright, R. B., Rugh, K. S., Garner, H. E., & Griggs, D. M. J. (1991). Myocardial blood flow, metabolism, and function with repeated brief coronary occlusions in conscious ponies. Am J Physiol, 260(1 Pt 2), H100–9.
Abstract: Studies were performed in the conscious pony instrumented with a Doppler flow probe and hydraulic occluder on the left anterior descending coronary artery (LAD), sonomicrometry crystals and intraventricular micromanometer in the left ventricle, and catheters in the left atrium and anterior interventricular vein. Two-minute LAD occlusions were performed every 30 min continuously or during working hours. Data on release of catabolites (potassium, hydrogen ions, and lactate) and norepinephrine from the initially dysfunctional region were obtained periodically during a regimen of 445 +/- 56 occlusions in six animals. Regional myocardial blood flow was measured (microsphere method) before and after an occlusion regimen in four animals. Marked release of catabolites and norepinephrine from the initially dysfunctional region was noted in association with early occlusions when myocardial segment function was severely reduced. With further occlusions, release of these substances decreased while segment function improved. Blood flow was markedly decreased in the initially dysfunctional region during an early occlusion but was at the control level during a later occlusion. Although the metabolic findings are consistent with protection due to “ischemic preconditioning” and no increase in collateral perfusion, the inverse relationship noted between catabolite release and segment function is best explained by flow-dependent mechanisms. These results, together with the myocardial blood flow data, serve to validate a previous assumption that protection against regional myocardial dysfunction under these conditions is due to increased collateral perfusion.
|
|