|
Sivak, J. G., & Allen, D. B. (1975). An evaluation of the “ramp” retina of the horse eye. Vision Res, 15(12), 1353–1356.
Abstract: Using a rapid freezing and sectioning technique, the distance between the lens and retina of the horse eye was measured. There is no indication of a ramp retina that could serve accommodation. The pupil axis of the eye coincides with the maximum lens to retina distance. The changes in the lens-retina distance are greater below the axis than above it. Calculations were made of refractive power of the horse eye from measurements of curvature and refractive indices of the ocular tissues. These calculations agree both qualitatively and quantitatively with retinoscopic measurements on live horses. Both show that the refractive state shifts in the direction of hyperopia above and below the axis and that this shift is greater below the axis than above it. Some dynamic accommodative ability in the living eye was observed.
|
|
|
Thiel, D., Jenni-Eiermann, S., & Palme, R. (2005). Measuring corticosterone metabolites in droppings of capercaillies (Tetrao urogallus). Ann N Y Acad Sci, 1046, 96–108.
Abstract: The capercaillie (Tetrao urogallus), the largest grouse species in the world, is decreasing in numbers in major parts of its distribution range. Disturbances by human outdoor activities are discussed as a possible reason for this population decline. An indicator for disturbances is the increase of the glucocorticoid corticosterone, a stress hormone, which helps to cope with life-threatening situations. However, repeated disturbances might result in a long-term increase of the basal corticosterone concentration, which can result in detrimental effects like reduced fitness and survival of an animal. To measure corticosterone metabolites (CMs) noninvasively in the droppings of free-living capercaillies, first an enzyme immunoassay (EIA) in captive birds had to be selected and validated. Therefore, the excretion pattern of intravenously injected radiolabeled corticosterone was determined and 3H metabolites were characterized. High-performance liquid chromatography (HPLC) separations of the samples containing peak concentrations revealed that corticosterone was extensively metabolized. The HPLC fractions were tested in several EIAs for glucocorticoid metabolites. The physiological relevance of this method was proved after pharmacological stimulation of the adrenocortical activity. Only the recently established cortisone assay, measuring CMs with a 3,11-dione structure, detected an expressed increase of concentrations following ACTH stimulation. To set up a sampling protocol suited for the field, we examined the influence of various storage conditions and time of day on concentrations of CMs.
|
|