|
Baum, M. J. (2006). Mammalian animal models of psychosexual differentiation: when is 'translation' to the human situation possible? Horm Behav, 50(4), 579–588.
Abstract: Clinical investigators have been forced primarily to use experiments of nature (e.g., cloacal exstrophy; androgen insensitivity, congenital adrenal hyperplasia) to assess the contribution of fetal sex hormone exposure to the development of male- and female-typical profiles of gender identity and role behavior as well as sexual orientation. In this review, I summarize the results of numerous correlative as well as mechanistic animal experiments that shed significant light on general neuroendocrine mechanisms controlling the differentiation of neural circuits controlling sexual partner preference (sexual orientation) in mammalian species including man. I also argue, however, that results of animal studies can, at best, provide only indirect insights into the neuroendocrine determinants of human gender identity and role behaviors.
|
|
|
Blaisdell, A. P., & Cook, R. G. (2005). Integration of spatial maps in pigeons. Anim. Cogn., 8(1), 7–16.
Abstract: The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
|
|
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Cheng, K., & Wignall, A. E. (2006). Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim. Cogn., 9(2), 141–150.
Abstract: Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.
|
|
|
Chiesa, A. D., Pecchia, T., Tommasi, L., & Vallortigara, G. (2006). Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain. Anim. Cogn., 9(4), 281–293.
Abstract: A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
|
|
|
Church, D. L., & Plowright, C. M. S. (2006). Spatial encoding by bumblebees (Bombus impatiens) of a reward within an artificial flower array. Anim. Cogn., 9(2), 131–140.
Abstract: We presented bumblebees a spatial memory task similar to that used with other species (e.g., cats, dogs, and pigeons). In some conditions we allowed for presence of scent marks in addition to placing local and global spatial cues in conflict. Bumblebees (Bombus impatiens) were presented an array of artificial flowers within a flight cage, one flower offering reward (S+), while the others were empty (S-). Bees were tested with empty flowers. In Experiment 1, flowers were either moved at the time of testing or not. Bees returned to the flower in the same absolute position of the S+ (the flower-array-independent (FAI) position), even if it was in the wrong position relative to the S- and even when new flower covers prevented the use of possible scent marks. New flower covers (i.e., without possible scent marks) had the effect of lowering the frequency of probing behavior. In Experiment 2, the colony was moved between training and testing. Again, bees chose the flower in the FAI position of the S+, and not the flower that would be chosen using strictly memory for a flight vector. Together, these experiments show that to locate the S+ bees did not rely on scent marks nor the positions of the S-, though the S- were prominent objects close to the goal. Also, bees selected environmental features to remember the position of the S+ instead of relying upon a purely egocentric point of view. Similarities with honeybees and vertebrates are discussed, as well as possible encoding mechanisms.
|
|
|
De Boyer Des Roches, A., Richard-Yris, M. - A., Henry, S., Ezzaouia, M., & Hausberger, M. (2008). Laterality and emotions: visual laterality in the domestic horse (Equus caballus) differs with objects' emotional value. Physiol. Behav., 94(3), 487–490.
Abstract: Lateralization of emotions has received great attention in the last decades, both in humans and animals, but little interest has been given to side bias in perceptual processing. Here, we investigated the influence of the emotional valence of stimuli on visual and olfactory explorations by horses, a large mammalian species with two large monocular visual fields and almost complete decussation of optic fibres. We confronted 38 Arab mares to three objects with either a positive, negative or neutral emotional valence (novel object). The results revealed a gradient of exploration of the 3 objects according to their emotional value and a clear asymmetry in visual exploration. When exploring the novel object, mares used preferentially their right eyes, while they showed a slight tendency to use their left eyes for the negative object. No asymmetry was evidenced for the object with the positive valence. A trend for an asymmetry in olfactory investigation was also observed. Our data confirm the role of the left hemisphere in assessing novelty in horses like in many vertebrate species and the possible role of the right hemisphere in processing negative emotional responses. Our findings also suggest the importance of both hemispheres in the processing positive emotions. This study is, to our knowledge, the first to demonstrate clearly that the emotional valence of a stimulus induces a specific visual lateralization pattern.
|
|
|
Fenton, B., & Ratcliffe, J. (2004). Animal behaviour: eavesdropping on bats. Nature, 429(6992), 612–613.
|
|
|
Goncalves, T. C., Rocha, D. S., & Cunha, R. A. (2000). Feeding patterns of Triatoma vitticeps in the State of Rio de Janeiro, Brazil. Rev Saude Publica, 34(4), 348–352.
Abstract: OBJECTIVE: Feeding patterns of triatomines have contributed to elucidate its biology. Triatoma vitticeps, naturally infected with T. cruzi, has been found in domiciles. Its behavior and epidemiological patterns were investigated. METHODS: One-hundred and twenty two specimens of T. vitticeps were captured from February 1989 to April 1993 in two areas of Triunfo municipality, a subdistrict of Santa Maria Madalena municipal district, State of Rio de Janeiro, Brazil. The insects were dissected and their intestinal contents were removed and tested. It was used antisera from: man, cow, horse, dog, pig, armadillo, opossum, rodent, and bird. RESULTS: From the total analyzed, 79 were positive and 43 were negative to the nine antisera tested: armadillo (30.3%) > human and pig (13.1%) > bird and dog (11.5%) > horse (5.7%) > opossum (4.9%) > rodent (4. 1%) > cow (3.3%). Blood meals ranged from 0 to 4 and 6 in the following distribution: 0 = 25.41%; 1 = 45.08%; 2 = 10.66%; 3 = 6. 56%; 4 = 1.64%, and 6 = 0.82%. Nine of the 122 insects captured were not examined, 74 (65.54%) were positive for T. cruzi infection and 39 (34.51%) were negative. CONCLUSIONS: These results identified the T. vitticeps as being a sylvatic species and trypanosomiasis as being an enzootic disease. Epidemiological vigilance will be important to provide more information regarding the behavior of the species
|
|
|
Griffin, D. R. (2001). Animals know more than we used to think (Vol. 98).
|
|