|
Anderson, J. R. (1995). Self-recognition in dolphins: credible cetaceans; compromised criteria, controls, and conclusions. Conscious Cogn, 4(2), 239–243.
|
|
|
Brauer, J., Kaminski, J., Riedel, J., Call, J., & Tomasello, M. (2006). Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol, 120(1), 38–47.
Abstract: Domestic dogs (Canis familiaris) and great apes from the genus Pan were tested on a series of object choice tasks. In each task, the location of hidden food was indicated for subjects by some kind of communicative, behavioral, or physical cue. On the basis of differences in the ecologies of these 2 genera, as well as on previous research, the authors hypothesized that dogs should be especially skillful in using human communicative cues such as the pointing gesture, whereas apes should be especially skillful in using physical, causal cues such as food in a cup making noise when it is shaken. The overall pattern of performance by the 2 genera strongly supported this social-dog, causal-ape hypothesis. This result is discussed in terms of apes' adaptations for complex, extractive foraging and dogs' adaptations, during the domestication process, for cooperative communication with humans.
|
|
|
Brazas, M. L., & Shimizu, T. (2002). Significance of visual cues in choice behavior in the female zebra finch (Taeniopygia guttata castanotis). Anim. Cogn., 5(2), 91–95.
Abstract: Female zebra finches show a preference for male zebra finches over heterospecific males based solely on the auditory cues of males, such as songs. The present study was designed to investigate whether females show a similar preference for male zebra finches based solely on visual cues. Using a Y-maze apparatus, social preference of female zebra finches was studied between male zebra finches and male Bengalese finches in three experiments. In experiment 1, where female zebra finches could see and hear live male zebra finches and male Bengalese finches, the females preferred to associate with the male zebra finches. In experiment 2, using a sound-attenuated experimental apparatus, subjects could see, but not hear, male zebra finches and male Bengalese finches. The subjects did not show a significant preference for associating with zebra finches. In experiment 3, as in experiment 2, females could see live male zebra finches and male Bengalese finches in the sound-attenuated chambers. However, in experiment 3, the subjects also heard prerecorded auditory cues (i.e., songs and calls) of male zebra finches, which were presented simultaneously in both arms of the maze. Although the females could not use the auditory cues to identify the location of the male zebra finches, they preferred to associate with the male zebra finches rather than the male Bengalese finches. These results suggest that visual cues alone were effective in initiating choice behaviors by females and that auditory cues facilitate such visually based choice behaviors.
|
|
|
Collier-Baker, E., Davis, J. M., Nielsen, M., & Suddendorf, T. (2006). Do chimpanzees (Pan troglodytes) understand single invisible displacement? Anim. Cogn., 9(1), 55–61.
Abstract: Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.
|
|
|
de Waal, F. B. M. (2003). Darwin's legacy and the study of primate visual communication. Ann N Y Acad Sci, 1000, 7–31.
Abstract: After Charles Darwin's The Expression of the Emotions in Man and Animals, published in 1872, we had to wait 60 years before the theme of animal expressions was picked up by another astute observer. In 1935, Nadezhda Ladygina-Kohts published a detailed comparison of the expressive behavior of a juvenile chimpanzee and of her own child. After Kohts, we had to wait until the 1960s for modern ethological analyses of primate facial and gestural communication. Again, the focus was on the chimpanzee, but ethograms on other primates appeared as well. Our understanding of the range of expressions in other primates is at present far more advanced than that in Darwin's time. A strong social component has been added: instead of focusing on the expressions per se, they are now often classified according to the social situations in which they typically occur. Initially, quantitative analyses were sequential (i.e., concerned with temporal associations between behavior patterns), and they avoided the language of emotions. I will discuss some of this early work, including my own on the communicative repertoire of the bonobo, a close relative of the chimpanzee (and ourselves). I will provide concrete examples to make the point that there is a much richer matrix of contexts possible than the common behavioral categories of aggression, sex, fear, play, and so on. Primate signaling is a form of negotiation, and previous classifications have ignored the specifics of what animals try to achieve with their exchanges. There is also increasing evidence for signal conventionalization in primates, especially the apes, in both captivity and the field. This process results in group-specific or “cultural” communication patterns.
|
|
|
Fiset, S., & Dore, F. Y. (2006). Duration of cats' (Felis catus) working memory for disappearing objects. Anim. Cogn., 9(1), 62–70.
Abstract: This study explored the duration of cats' working memory for hidden objects. Twenty-four cats were equally divided into four groups, which differed according to the type of visual cues displayed on and/or around the hiding boxes. During eight sessions, the four groups of cats were trained to locate a desirable object hidden behind one of the four boxes placed in front of them. Then, the cats were tested with retention intervals of 0, 10, 30 and 60 s. Results revealed no significant differences between the groups during training or testing. In testing, the cats' accuracy to locate the hidden object rapidly declined between 0 and 30 s but remained higher than chance with delays of up to 60 s. The analysis of errors also indicated that the cats searched as a function of the proximity of the target box and were not subjected to intertrial proactive interference. This experiment reveals that the duration of cats' working memory for disappearing objects is limited and the visual cues displayed on and/or around the boxes do not help the cats to memorize a hiding position. In discussion, we explore why the duration of cats' working memory for disappearing objects rapidly declined and compare these finding with those from domestic dogs. The irrelevance of visual cues displayed on and around the hiding boxes on cats' retention capacity is also discussed.
|
|
|
Fiset, S., & Leblanc, V. (2007). Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Anim. Cogn., 10(2), 211–224.
Abstract: Recently, (Collier-Baker E, Davis JM, Suddendorf T (2004) J Comp Psychol 118:421-433) suggested that domestic dogs do not understand invisible displacements. In the present study, we further investigated the hypothesis that the search behavior of domestic dogs in invisible displacements is guided by various visual cues inherent to the task rather than by mental representation of an object's past trajectory. Specifically, we examined the role of the experimenter as a function of the final position of the displacement device in the search behavior of domestic dogs. Visible and invisible displacement problems were administered to dogs (N = 11) under two conditions. In the Visible-experimenter condition, the experimenter was visible whereas in the Concealed-experimenter condition, the experimenter was visibly occluded behind a large rigid barrier. Our data supported the conclusion that dogs do not understand invisible displacements but primarily search as a function of the final position of the displacement device and, to a lesser extent, the position of the experimenter.
|
|
|
Hart, D., & Whitlow, J. W. J. (1995). The experience of self in the bottlenose dolphin. Conscious Cogn, 4(2), 244–247.
Abstract: Marten and Psarakos have presented some evidence which suggests that objective self-awareness and possibly representations of self may characterize the dolphins' experience of self. Their research demonstrates the possibility of similarities in the sense of self between primate species and dolphins, although whether dolphins have subjective self-awareness, personal memories, and theories of self--all important facets of the sense of self in humans--was not examined. Clearly, even this limited evidence was difficult to achieve; the difficulties in adapting methods and coding behavior are quite apparent in their report. Future progress, however, may depend upon clarification of what are the necessary components for a sense of self and an explication of how these might be reflected in dolphin behavior. We are mindful of the authors' point (pp. 219 and 220) that the dolphin lives more in an acoustic than a visual environment. Thus, while tasks relying upon vision may reveal the presence or absence of the sense of self in primates, it might well be the case that in dolphins self-related experiences might be better revealed in auditory tasks. But then, what is the nature of human self-awareness in terms of audition? While both conceptual and methodological hurdles remain, Marten and Psarakos have demonstrated that important questions can be asked about the minds and phenomenal worlds of nonanthropoid species.
|
|
|
Hauser, M. D., Kralik, J., Botto-Mahan, C., Garrett, M., & Oser, J. (1995). Self-recognition in primates: phylogeny and the salience of species-typical features. Proc. Natl. Acad. Sci. U.S.A., 92(23), 10811–10814.
Abstract: Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.
|
|
|
Klein, E. D., Bhatt, R. S., & Zentall, T. R. (2005). Contrast and the justification of effort. Psychon Bull Rev, 12(2), 335–339.
Abstract: When humans are asked to evaluate rewards or outcomes that follow unpleasant (e.g., high-effort) events, they often assign higher value to that reward. This phenomenon has been referred to as cognitive dissonance or justification of effort. There is now evidence that a similar phenomenon can be found in nonhuman animals. When demonstrated in animals, however, it has been attributed to contrast between the unpleasant high effort and the conditioned stimulus for food. In the present experiment, we asked whether an analogous effect could be found in humans under conditions similar to those found in animals. Adult humans were trained to discriminate between shapes that followed a high-effort versus a low-effort response. In test, participants were found to prefer shapes that followed the high-effort response in training. These results suggest the possibility that contrast effects of the sort extensively studied in animals may play a role in cognitive dissonance and other related phenomena in humans.
|
|