|
Bannasch, D., Rinaldo, C., Millon, L., Latson, K., Spangler, T., Hubberty, S., et al. (2007). SRY negative 64,XX intersex phenotype in an American saddlebred horse. Vet J, 173(2), 437–439.
Abstract: A female American saddlebred horse was presented for surgical correction of a possible pseudohermaphrodite condition. The horse had abnormal external genitalia and exhibited stallion-like behaviour. No evidence of uterine or ovarian tissue was identified on laparoscopic examination, but hypoplastic testicular-like tissue was removed, although this was found to contain no spermatogonia upon histopathological examination. A karyotype was performed and showed the normal chromosomal complement for a female horse (64,XX). Polymerase chain reaction to detect the SRY gene was negative in peripheral blood as well as the testicular-like tissue. This case represents the first report of an SRY negative XX-male sex reversal intersex phenotype, which is a potentially inherited condition, in an American saddlebred horse.
|
|
|
Barrey, E., Desliens, F., Poirel, D., Biau, S., Lemaire, S., Rivero, J. L. L., et al. (2002). Early evaluation of dressage ability in different breeds. Equine Vet J Suppl, (34), 319–324.
Abstract: Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.
|
|
|
Boice, R. (1981). Behavioral comparability of wild and domesticated rats. Behav Genet, 11(5), 545–553.
Abstract: The oft-repeated concern for the lack of behavioral comparability of domestic rats with wild forms of Rattus norvegicus is unfounded. Laboratory rats appear to show the potential for all wild-type behaviors, including the most dramatic social postures. Moreover, domestics are capable of assuming a feral existence without difficulty, one where they readily behave in a fashion indistinguishable from wild rats. The one behavioral difference that is clearly established concerns performance in laboratory learning paradigms. The superiority of domestics in these laboratory tasks speaks more to quieting the concerns of degeneracy theorists than to problems of using domestic Norway rats as subjects representative of their species.
|
|
|
Bouchard, T. J. J., & Loehlin, J. C. (2001). Genes, evolution, and personality. Behav Genet, 31(3), 243–273.
Abstract: There is abundant evidence, some of it reviewed in this paper, that personality traits are substantially influenced by the genes. Much remains to be understood about how and why this is the case. We argue that placing the behavior genetics of personality in the context of epidemiology, evolutionary psychology, and neighboring psychological domains such as interests and attitudes should help lead to new insights. We suggest that important methodological advances, such as measuring traits from multiple viewpoints, using large samples, and analyzing data by modern multivariate techniques, have already led to major changes in our view of such perennial puzzles as the role of “unshared environment” in personality. In the long run, but not yet, approaches via molecular genetics and brain physiology may also make decisive contributions to understanding the heritability of personality traits. We conclude that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.
|
|
|
Branchi, I., Bichler, Z., Berger-Sweeney, J., & Ricceri, L. (2003). Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev, 27(1-2), 141–153.
Abstract: About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
|
|
|
Breen, M., Downs, P., Irvin, Z., & Bell, K. (1994). Intrageneric amplification of horse microsatellite markers with emphasis on the Przewalski's horse (E. przewalskii). Anim Genet, 25(6), 401–405.
Abstract: Primer sequences flanking 13 microsatellite loci isolated from the domestic horse (E. caballus) were successfully used to amplify homologous loci in the Przewalski's horse (E. przewalskii). The results demonstrate that the level of polymorphism at all 13 loci in the Przewalski's horse was comparable to that in the domestic horse and the overall exclusion probability in the Przewalski's horse was calculated to be 0.9994. The results suggest that it should be possible to use E. caballus-derived microsatellite markers to provide parentage verification and additional valuable information to the captive management of E. przewalskii. The ability to amplify corresponding loci in the remaining five species of the genus was also confirmed, illustrating the general application of markers isolated from the domestic horse to the evaluation of polymorphism in the other six species of the genus.
|
|
|
Chilton, N. B. (2004). The use of nuclear ribosomal DNA markers for the identification of bursate nematodes (order Strongylida) and for the diagnosis of infections. Anim Health Res Rev, 5(2), 173–187.
Abstract: Many bursate nematodes are of major importance to animal health. Animals are often parasitized by multiple species that differ in their prevalence, relative abundance and/or pathogenicity. Implementation of effective management strategies for these parasites requires reliable methods for their detection in hosts, identification to the species level and measurement of intensity of infection. One major problem is the difficulty of accurately identifying and distinguishing many species of bursate nematode because of the remarkable morphological similarity of their eggs and larvae. The inability to identify, with confidence, individual nematodes (irrespective of their life-cycle stage) to the species level by morphological methods has often led to a search for species-specific genetic markers. Studies over the past 15 years have shown that sequences of the internal transcribed spacers of ribosomal DNA provide useful genetic markers, providing the basis for the development of PCR-based diagnostic tools. Such molecular methods represent powerful tools for studying the systematics, epidemiology and ecology of bursate nematodes and, importantly, for the specific diagnosis of infections in animals and humans, thus contributing to improved control and prevention strategies for these parasites.
|
|
|
Cilnis, M. J., Kang, W., & Weaver, S. C. (1996). Genetic conservation of Highlands J viruses. Virology, 218(2), 343–351.
Abstract: We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.
|
|
|
Crosby, M. B., Zhang, J., Nowling, T. M., Svenson, J. L., Nicol, C. J., Gonzalez, F. J., et al. (2006). Inflammatory modulation of PPAR gamma expression and activity. Clin Immunol, 118(2-3), 276–283.
Abstract: Nitric oxide (NO) production increases with age in the lupus-prone MRL/lpr mouse, paralleling disease activity. One mechanism for excess NO production in MRL/lpr mice may be a defect in down-regulatory mechanisms of the iNOS pathway. A potential modulator of NO is the nuclear hormone receptor peroxisome proliferation activated receptor gamma (PPARgamma). We demonstrate that renal PPARgamma protein expression was altered as disease progressed in MRL/lpr mice, which paralleled increased iNOS protein expression. Additionally, MRL/lpr-derived primary mesangial cells expressed less PPARgamma than BALB/c mesangial cells and produced more NO in response to LPS and IFNgamma. Furthermore, PPARgamma activity was reduced in mesangial cells following exposure to inflammatory mediators. This activity was restored with the addition of a NOS enzyme inhibitor. These results indicate that the activation of inflammatory pathways may lead to reduced activity and expression of PPARgamma, further exacerbating the disease state.
|
|
|
de Waal, F. B. (1999). The end of nature versus nurture. Sci Am, 281(6), 94–99.
|
|