toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Dimatteo, S.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title Catecholamine plasma levels following immune stimulation with rabies vaccine in dogs selected for their paw preferences Type Journal Article
  Year 2010 Publication Neuroscience Letters Abbreviated Journal  
  Volume 476 Issue 3 Pages 142-145  
  Keywords (up) Physiology; Behavior; Lateralization; Catecholamines; Paw preference; Neuro-immune-modulation  
  Abstract Epinephrine and norepinephrine plasma levels were assessed in dogs in relation to paw preference following an immune challenge with rabies vaccine. The results showed that both catecholamines increased after the vaccine administration, confirming the main role of the sympathetic nervous system in the modulation activity between the brain and the immune system. Moreover, ambidextrous dogs showed a significantly higher increase of epinephrine levels 8 days after immunization with respect to right- and left-pawed dogs, suggesting that the biological activity of this molecule could be key for a different immune response with regard to laterality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5788  
Permanent link to this record
 

 
Author Neveu, P.J. url  doi
openurl 
  Title Brain Lateralization and Immunomodulation Type Journal Article
  Year 1993 Publication International Journal of Neuroscience Abbreviated Journal Int J Neurosci  
  Volume 70 Issue 1-2 Pages 135-143  
  Keywords (up) Psychoneuroimmunology, brain lateralization  
  Abstract The two sides of the brain may be differently involved in the modulation of immune responses as demonstrated by lesional and behavioral approaches in rodents. Lesions of right or left neocortex induced opposite effects on various immune parameters including mitogen-induced lymphoproliferation, interleukin-2 production, macrophage activation or natural killer cell activity. This animal model, useful to elucidate whereby the brain and the immune system can communicate, appears to be suitable for studying the immune perturbations observed during stroke in humans. Brain asymmetry in modulation of immune reactivity may also be demonstrated in intact animal using a behavioral paradigm. The direction of a lateralized motor behavior ie paw preference in a food reaching task, correlated with an asymmetrical brain organization, was shown to be associated with lymphocyte reactivity, natural killer cell activity and auto-antibody production. The association between paw preference and immune reactivity in mice varies according to the immune parameters tested and is a sex-dependent phenomenon in which genetic background may be involved. The experimental models for investigating asymmetrical brain modulation of the immune system should be useful for studying several physiological, pathological and genetic aspects of neuroimmunomodulation.  
  Address  
  Corporate Author Thesis  
  Publisher Informa Clin Med Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7454 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.3109/00207459309000569 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5778  
Permanent link to this record
 

 
Author Vallortigara, G.; Andrew, R.J. url  doi
openurl 
  Title Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
  Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 33 Issue 1-2 Pages 41-57  
  Keywords (up) Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick  
  Abstract Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5341  
Permanent link to this record
 

 
Author Tomkins, L.M.; Williams, K.A.; Thomson, P.C.; McGreevy, P.D. url  doi
openurl 
  Title Sensory Jump Test as a measure of sensory (visual) lateralization in dogs (Canis familiaris) Type Journal Article
  Year 2010 Publication Journal of Veterinary Behavior Abbreviated Journal  
  Volume 5 Issue 5 Pages 256-267  
  Keywords (up) sensory lateralization; monocular vision; binocular vision; jump kinematics; dog  
  Abstract Sensory lateralization in dogs (n = 74) was investigated in this study using our innovation, the Sensory Jump Test. This required the modification of head halters to create three different ocular treatments (binocular, right, and left monocular vision) for eye preference assessment in a jumping task. Ten jumps were recorded as a jump set for each treatment. Measurements recorded included (i) launch and landing paws, (ii) type of jump, (iii) approach distance, (iv) clearance height of the forepaw, hindpaw, and the lowest part of the body to clear the jump, and (v) whether the jump was successful. Factors significantly associated with these jump outcomes included ocular treatment, jump set number, and replication number. Most notably, in the first jump set, findings indicated a left hemispheric dominance for the initial navigation of the Sensory Jump Test, as left monocular vision (LMV) compromised of jumping more than right monocular (RMV) and binocular vision, with a significantly reduced approach distance and forepaw clearance observed in dogs with LMV. However, by the third jump set, dogs undergoing LMV launched from a greater approach distance and with a higher clearance height, corresponding to an increase in success rate of the jump, in comparison with RMV and binocular vision dogs. A marginally non-significant RMV bias was observed for eye preference based on the laterality indices for approach distance (P = 0.060) and lowest body part clearance height (P = 0.067). A comparison between eye preference and launching or landing paws showed no association between these measures of sensory and motor laterality. To our knowledge, this is the first study to report on sensory lateralization in the dog, and furthermore, to compare both motor and sensory laterality in dogs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-7878 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ S1558-7878(10)00019-5 Serial 5379  
Permanent link to this record
 

 
Author Marinsek, N.L.; Gazzaniga, M.S.; Miller, M.B. url  doi
isbn  openurl
  Title Chapter 17 – Split-Brain, Split-Mind Type Book Chapter
  Year 2016 Publication The Neurology of Conciousness (Second Edition) Abbreviated Journal  
  Volume Issue Pages 271-279  
  Keywords (up) Split-brain; consciousness; lateralization; modular; left hemisphere interpreter  
  Abstract The corpus callosum anatomically and functionally connects the two cerebral hemispheres. Despite its important role in interhemispheric communication however, severing the corpus callosum produces few--if any--noticeable cognitive or behavioral abnormalities. Incredibly, split-brain patients do not report any drastic changes in their conscious experience even though nearly all interhemispheric communication ceases after surgery. Extensive research has shown that both hemispheres remain conscious following disconnection and the conscious experience of each hemisphere is private and independent of the other. Additionally, the conscious experiences of the hemispheres appear to be qualitatively different, such that the consciousness of the left hemisphere is more enriched than the right. In this chapter, we offer explanations as to why split-brain patients feel unified despite possessing dual conscious experiences and discuss how the divided consciousness of split-brain patients can inform current theories of consciousness.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication San Diego Editor Laureys, S.; Gosseries, O.; Tononi, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-800948-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6648  
Permanent link to this record
 

 
Author Güntürkün, O.; Kesch, S. doi  openurl
  Title Visual lateralization during feeding in pigeons Type Journal Article
  Year 1987 Publication Behavioral Neuroscience Abbreviated Journal Behav. Neurosci.  
  Volume 101 Issue 3 Pages 433-435  
  Keywords (up) use of right vs left eye, amount & accuracy of pecking in food discrimination task, homing pigeons, implications for lateralization of cerebral function  
  Abstract In a quasi-natural feeding situation, adult pigeons had to detect and consume 30 food grains out of about 1,000 pebbles of similar shape, size, and color within 30 s under monocular conditions. With the right eye seeing, the animals achieved a significantly higher discrimination accuracy and, consequently, a significantly higher proportion of grains grasped than with the left eye seeing. This result supports previous demonstrations of a left-hemisphere dominance for visually guided behavior in birds. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  
  Address  
  Corporate Author Thesis  
  Publisher US: American Psychological Association Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-0084(Electronic);0735-7044(Print) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 1987-30501-001 Serial 5588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print