toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vallortigara, G.; Andrew, R.J. url  doi
openurl 
  Title Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
  Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 33 Issue 1-2 Pages 41-57  
  Keywords Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick  
  Abstract Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5341  
Permanent link to this record
 

 
Author Perez-Cruz, C.; Simon, M.; Czéh, B.; Flügge, G.; Fuchs, E. url  doi
openurl 
  Title Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes Type Journal Article
  Year 2009 Publication European Journal of Neuroscience Abbreviated Journal Eur. J. Neurosci.  
  Volume 29 Issue 4 Pages 738-747  
  Keywords dendrite; diurnal rhythm; lateralization; prefrontal cortex; spine  
  Abstract Abstract Pyramidal neurons of the rat medial prefrontal cortex have been shown to react to chronic stress by retracting their apical dendrites and by spine loss. We extended these findings by focusing on the basilar dendritic tree of layer III pyramidal neurons in both hemispheres of the rat prelimbic cortex. Animals were subjected to daily restraint stress for 1 week (6 h/day), during either the resting or the activity period. The morphology of basilar dendrites and spines of Golgi–Cox-stained neurons in the left and right hemispheres was digitally reconstructed and analyzed. We observed the following: (i) there was an inherent hemispheric asymmetry in control rats during the resting period: the number of spines on proximal dendrites was higher in the left than in the right hemisphere; (ii) basal dendrites in controls displayed a diurnal variation: there was more dendritic material during the resting period than in the activity period; (iii) chronic stress reduced the length of basal dendrites in only the right prelimbic cortex; (iv) chronic stress reduced spine density on proximal basal dendrites; (v) restraint stress during the activity period had more pronounced effects on the physiological stress parameters than restraint stress during the resting period. Our results show dynamic hemisphere-dependent structural changes in pyramidal neurons of the rat prelimbic cortex that are tightly linked to periods of resting and activity. These morphological alterations reflect the capacity of the neurons to react to external stimuli and mirror presumptive changes in neuronal communication.  
  Address  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-9568 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5355  
Permanent link to this record
 

 
Author Reddon, A.R.; Hurd, P.L. url  doi
openurl 
  Title Individual differences in cerebral lateralization are associated with shy-bold variation in the convict cichlid Type Journal Article
  Year 2009 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 77 Issue 1 Pages 189-193  
  Keywords animal personality; Archocentrus nigrofasciatus; cerebral lateralization; convict cichlid; life history strategy; shy-bold continuum  
  Abstract Cerebral lateralization, the preferential use of one hemisphere of the brain to perform certain cognitive functions, is a widespread and evolutionarily ancient adaptation. Lateralization appears to enhance cognitive capacity, yet substantial individual variation in the strength cerebral lateralization is apparent in all species studied so far. It is puzzling that cerebral lateralization, a seemingly advantageous trait, has not been driven to fixation. It has been suggested that variation in lateralization may be linked to individual variation in behaviour, which itself may be subject to disruptive selection. We examined the relation between cerebral lateralization and individual variation in boldness in the convict cichlid, Archocentrus nigrofasciatus. We show that convict cichlids that are more strongly lateralized when exploring a familiar environment, but not a novel one, are quicker to emerge from a shelter in a test for boldness. The possibility that cerebral lateralization is linked to life history strategy is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5373  
Permanent link to this record
 

 
Author Zucca, P.; Cerri, F.; Carluccio, A.; Baciadonna, L. url  doi
openurl 
  Title Space availability influence laterality in donkeys (Equus asinus) Type Journal Article
  Year Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume In Press, Uncorrected Proof Issue Pages  
  Keywords Cerebral lateralization; Donkey; Footedness; Welfare; Equus asinus  
  Abstract Cerebral lateralization is the portioning of the cognitive functions between the two cerebral hemispheres. Several factors, like embryological manipulations, light exposure, health conditions, sex and age can influence the left-right brain asymmetries and contribute to increasing the variability in the strength and direction of laterality within most species. We investigated the influence of an environmental constraint, namely space availability, as a new source of variation on laterality in an adult vertebrate model, the donkey. In a baseline condition we tested whether donkeys show a motor lateralization bias at population level, while in an experimental condition we manipulated space availability to verify if a reduction in this parameter could represent a new source of variation in laterality. Results show that donkeys are lateralized at population level with a strong bias to standing with the right forelimb advanced over the left and that a reduction of space availability is an important source of variation in the laterality strength and direction within this species. The comparative analysis of the environmental and developmental factors that give origin to neural and behavioural laterality in animal models will be very important for a better understanding of the evolutionary origin of such multifaceted phenomenon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5400  
Permanent link to this record
 

 
Author Reddon, A.R.; Hurd, P.L. url  doi
openurl 
  Title Acting unilaterally: Why do animals with strongly lateralized brains behave differently than those with weakly lateralized brains? Type Journal Article
  Year 2009 Publication Bioscience Hypotheses Abbreviated Journal  
  Volume 2 Issue 6 Pages 383-387  
  Keywords Cerebral lateralization; Individual variation; Personality; Habenula; Dorsal-diencephalic conduction system  
  Abstract Cerebral lateralization was once thought to be unique to humans, but is now known to be widespread among the vertebrates. Lateralization appears to confer cognitive advantages upon those that possess it. Despite the taxonomic ubiquity and described advantages of lateralization, substantial individual variation exists in all species. Individual variation in cerebral lateralization may be tied to individual variation in behaviour and the selective forces that act to maintain variation in behaviour may also act to maintain variation in lateralization. The mechanisms linking individual variation in the strength of cerebral lateralization to individual variation in behaviour remain obscure. We propose here a general hypothesis which may help to explain this link. We suggest that individuals with strong and weak lateralizations behave differently because of differences in the ability of one hemisphere to inhibit the functions of the other in each type of brain organization. We also suggest a specific mechanism involving the asymmetric epithalamic nucleus, the habenula. We conclude by discussing some predictions and potential tests of our hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-2392 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5417  
Permanent link to this record
 

 
Author Komárková, M.; Bartošová, J. url  doi
openurl 
  Title Lateralized suckling in domestic horses (Equus caballus) Type Journal Article
  Year 2013 Publication Abbreviated Journal Animal Cognition  
  Volume 16 Issue 3 Pages 343-349  
  Keywords Domestic horse; Foal; Suckling; Lateralization  
  Abstract Brain lateralization enables preferential processing of certain stimuli and more effective utilization of these stimuli in either the left or the right cerebral hemisphere. Horses show both motor and sensory lateralization patterns. Our aim was to determine whether a lateralized response could be detected in foals during the naturally side-biased behaviour, suckling. The foals’ preferred suckling side could be the effect of either visual or motor lateralization. In the case of a visual lateralized response, foals are expected to suck more often from the mother’s right side, so potential danger can be detected by the better adapted right hemisphere (i.e. left eye). Motor lateralization can be identified when a foal will suck predominantly from one side, either left or right. We found no population trend in the preferred suckling side, but we detected significant differences amongst individual foals. One-third (35.4 %) of 79 foals showed a strong, either right or left side preference which increased with age. The mothers did not influence the foals’ suckling side preferences either by side-biased rejection or termination of suckling. According to our findings, a general pattern of sucking with the left eye open for better danger detection and recognition is unlikely in foals up to 7 months old. Foals of this age are probably young or fully focused on suckling and rely on their mothers’ vigilance. Individual side preferences amongst foals are suggested to be based on motor lateralization.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5664  
Permanent link to this record
 

 
Author Baragli, P.; Vitale, V.; Paoletti, E.; Sighieri, C.; Reddon, A.R. url  doi
openurl 
  Title Detour behaviour in horses (Equus caballus) Type Journal Article
  Year 2011 Publication Journal of Ethology Abbreviated Journal J. Ethol.  
  Volume 29 Issue 2 Pages 227-234  
  Keywords Detour behaviour; Equus caballus; Horses; Lateralization; Spatial reasoning  
  Abstract The objective of this study was to investigate the ability of horses (Equus caballus) to detour around symmetric and asymmetric obstacles. Ten female Italian saddle horses were each used in three detour tasks. In the first task, the ability to detour around a symmetrical obstacle was evaluated; in the second and third tasks subjects were required to perform a detour around an asymmetrical obstacle with two different degrees of asymmetry. The direction chosen to move around the obstacle and time required to make the detour were recorded. The results suggest that horses have the spatial abilities required to perform detour tasks with both symmetric and asymmetric obstacles. The strategy used to perform the task varied between subjects. For five horses, lateralized behaviour was observed when detouring the obstacle; this was consistently in one direction (three on the left and two on the right). For these horses, no evidence of spatial learning or reasoning was found. The other five horses did not solve this task in a lateralized manner, and a trend towards decreasing lateralization was observed as asymmetry, and hence task difficulty, increased. These non-lateralized horses may have higher spatial reasoning abilities.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Japan Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0771 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5686  
Permanent link to this record
 

 
Author Austin, N.P.; Rogers, L.J. url  doi
openurl 
  Title Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii) Type Journal Article
  Year 2014 Publication Applied Animal Behaviour Science Abbreviated Journal  
  Volume 151 Issue Pages 43-50  
  Keywords Behavioural lateralization: Eye preference; Limb preference; Aggression; Vigilance; Reactivity; Przewalski horses  
  Abstract tEye and limb preferences were scored in the closest undomesticated relative of Equuscaballus using the same methods as used previously to study laterality in feral horses.Observations were made of 33 Przewalski horses (Equus ferus przewalskii) (male N = 20,female N = 13) living under natural social conditions on a large reserve in France. Signifi-cant left-eye/side biases were found in agonistic interactions within harem bands (M ± SEbias to left 58% ± 0.01 for threats, P < 0.001; 68% ± 0.05 for attacks; P < 0.001) and in stallionfights (threats, 52% ± 0.01 left, P < 0.001; attacks, 63% ± 0.02 left, P < 0.001): as many as 80%of the horses were significantly lateralized in attack responses within harem bands. Lat-erality of vigilance was measured as lifting up the head from grazing and turning it to theleft or right side: a directional bias to the left was found (M ± SE 53% ± 0.02 left, P < 0.001).Side bias in reactivity was calculated as the percent of head lifts above the level of thewithers on the left or right side and this was also left side biased (M ± SE 73% ± 0.03 left,P < 0.001). These results indicate right-hemisphere specialization for control of aggressionand responses to novelty. The left bias in attack scores within harem bands was strongerin males than females (P = 0.024) and in immature than adult horses (P = 0.032). Immaturehorses were also more strongly lateralized than adults in vigilance scores (P = 0.022), whichmay suggest that experience reduces these side biases. Our results show that Przewalskihorses exhibit left eye preferences, as do feral horses, and do so even more strongly thanferal horses. Considering feral and Przewalski horses together, we deduce that ancestralhorses had similar lateral biases. Also similar to feral horses, the Przewalski horses showedno significant forelimb preference at the group level or in the majority of horses at theindividual level, confirming the hypothesis that previously reported limb preferences indomestic breeds are entrained or generated by breed-specific selection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5768  
Permanent link to this record
 

 
Author Neveu, P.J. url  doi
openurl 
  Title Brain Lateralization and Immunomodulation Type Journal Article
  Year 1993 Publication International Journal of Neuroscience Abbreviated Journal Int J Neurosci  
  Volume 70 Issue 1-2 Pages 135-143  
  Keywords Psychoneuroimmunology, brain lateralization  
  Abstract The two sides of the brain may be differently involved in the modulation of immune responses as demonstrated by lesional and behavioral approaches in rodents. Lesions of right or left neocortex induced opposite effects on various immune parameters including mitogen-induced lymphoproliferation, interleukin-2 production, macrophage activation or natural killer cell activity. This animal model, useful to elucidate whereby the brain and the immune system can communicate, appears to be suitable for studying the immune perturbations observed during stroke in humans. Brain asymmetry in modulation of immune reactivity may also be demonstrated in intact animal using a behavioral paradigm. The direction of a lateralized motor behavior ie paw preference in a food reaching task, correlated with an asymmetrical brain organization, was shown to be associated with lymphocyte reactivity, natural killer cell activity and auto-antibody production. The association between paw preference and immune reactivity in mice varies according to the immune parameters tested and is a sex-dependent phenomenon in which genetic background may be involved. The experimental models for investigating asymmetrical brain modulation of the immune system should be useful for studying several physiological, pathological and genetic aspects of neuroimmunomodulation.  
  Address  
  Corporate Author Thesis  
  Publisher Informa Clin Med Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7454 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.3109/00207459309000569 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5778  
Permanent link to this record
 

 
Author Shen, Y.-Q.; Hebert, G.; Lin, L.-Y.; Luo, Y.-L.; Moze, E.; Li, K.-S.; Neveu, P.J. url  doi
openurl 
  Title Interleukine-1β and interleukine-6 levels in striatum and other brain structures after MPTP treatment: influence of behavioral lateralization Type Journal Article
  Year 2005 Publication Journal of Neuroimmunology Abbreviated Journal  
  Volume 158 Issue 1–2 Pages 14-25  
  Keywords N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Dopamine; Brain; Interleukin-6; Interleukin-1β; Behavioral lateralization  
  Abstract MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces diminution of the dopamine in nigrostriatal pathway and cognitive deficits in mice. MPTP treatment also increases pro-inflammatory cytokine production in substantia nigra and striatum. Since, pro-inflammatory cytokines influence striatal dopamine content and provoke cognitive impairments, the cognitive defects induced by MPTP may be partly due to brain cytokine induction in other structures than nigrostriatal pathway. Furthermore, behavioral lateralization, as assessed by paw preference, influences cytokine production at the periphery and in the central nervous system. Behavioral lateralization may thus influence brain cytokine levels after MPTP. In order to address these issues, mice selected for paw preference were injected with 25 mg/kg MPTP i.p. for five consecutive days after which striatal dopamine and DOPAC contents were measured by HPLC and IL-1&#946; and IL-6 quantified by ELISA in the striatum, cerebral cortex, hippocampus and hypothalamus. The results showed that MPTP treatment induced dramatic loss of DA in striatum, simultaneously, IL-6 levels decreased in the striatum and increased in hippocampus and hypothalamus, while IL-1&#946; levels decreased in the striatum, cerebral cortex and hippocampus. Interestingly, striatal dopamine turnover under basal conditions as well as striatal IL-1&#946; and IL-6 levels under basal conditions and after MPTP depended on behavioral lateralization. Left pawed mice showed a higher decrease in dopamine turnover and lower cytokine levels as compared to right pawed animals. Behavioral lateralization also influenced IL-6 hippocampal levels under basal conditions and IL-1&#946; cortical levels after MPTP. From these results, it can be concluded that MPTP-induced cognitive defects are accompanied by an alteration of pro-inflammatory cytokine levels in brain structures other than those involved in the nigrostriatal pathway. In addition, MPTP-induced dopamine decrease is influenced by behavioral lateralization, possibly through an effect on brain cytokine levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-5728 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5781  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print