toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Miksovska, J.; Larsen, R.W. openurl 
  Title Photothermal studies of pH induced unfolding of apomyoglobin Type Journal Article
  Year 2003 Publication Journal of Protein Chemistry Abbreviated Journal J Protein Chem  
  Volume 22 Issue 4 Pages 387-394  
  Keywords Acoustics; Animals; Apoproteins/*chemistry/metabolism; Circular Dichroism; Horses; Myocardium/chemistry; Myoglobin/*chemistry/metabolism; Photolysis; Protein Conformation/radiation effects; Protein Denaturation/radiation effects; *Protein Folding; Temperature; Thermodynamics  
  Abstract Conformational dynamic and enthalpy changes associated with pH induced unfolding of apomyoglobin were studied using photoacoustic calorimetry and photothermal beam deflection methods. The transition between the native state and the I intermediate was induced by a nanosecond pH jump from o-nitrobenzaldehyde photolysis. Deconvolution of photoacoustic waves indicates two kinetic processes. The fast phase (T < 50 ns) is characterized by a volume expansion of 8.8 ml mol(-1). This process is followed by a volume contraction of about -22 ml mol(-1) (tau approximately 500 ns). Photothermal beam deflection measurements do not reveal any volume changes on the time scale between approximately 100 micros and 5 ms. We associate the volume contraction with structural changes occurring during the transition between the native state and the I intermediate. The lack of any processes on the ms time scale may indicate the absence of structural events involving larger conformational changes of apomyoglobin after the pH jump.  
  Address Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-8033 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:13678303 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3780  
Permanent link to this record
 

 
Author Gulotta, M.; Rogatsky, E.; Callender, R.H.; Dyer, R.B. openurl 
  Title Primary folding dynamics of sperm whale apomyoglobin: core formation Type Journal Article
  Year 2003 Publication Biophysical Journal Abbreviated Journal Biophys J  
  Volume 84 Issue 3 Pages 1909-1918  
  Keywords Animals; Apoproteins/*chemistry; Crystallography/*methods; Horses; Myocardium/chemistry; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Species Specificity; Structure-Activity Relationship; Temperature; Whales  
  Abstract The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.  
  Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA. gulotta@aecom.yu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12609893 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3783  
Permanent link to this record
 

 
Author Gilmanshin, R.; Callender, R.H.; Dyer, R.B. openurl 
  Title The core of apomyoglobin E-form folds at the diffusion limit Type Journal Article
  Year 1998 Publication Nature Structural Biology Abbreviated Journal Nat Struct Biol  
  Volume 5 Issue 5 Pages 363-365  
  Keywords Animals; Apoproteins/*chemistry; Diffusion; Horses; Myoglobin/*chemistry; *Protein Folding; Spectroscopy, Fourier Transform Infrared; Temperature  
  Abstract The E-form of apomyoglobin has been characterized using infrared and fluorescence spectroscopies, revealing a compact core with native like contacts, most probably consisting of 15-20 residues of the A, G and H helices of apomyoglobin. Fast temperature-jump, time-resolved infrared measurements reveal that the core is formed within 96 micros at 46 degrees C, close to the diffusion limit for loop formation. Remarkably, the folding pathway of the E-form is such that the formation of a limited number of native-like contacts is not rate limiting, or that the contacts form on the same time scale expected for diffusion controlled loop formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-8368 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9586997 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3795  
Permanent link to this record
 

 
Author Ballew, R.M.; Sabelko, J.; Gruebele, M. openurl 
  Title Direct observation of fast protein folding: the initial collapse of apomyoglobin Type Journal Article
  Year 1996 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 93 Issue 12 Pages 5759-5764  
  Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Horses; Kinetics; Muscle, Skeletal/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Infrared; Temperature  
  Abstract The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.  
  Address School of Chemical Sciences and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, 61801, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8650166 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3798  
Permanent link to this record
 

 
Author Steinhoff, H.J.; Schrader, J.; Schlitter, J. openurl 
  Title Temperature-jump studies and polarized absorption spectroscopy of methemoglobin-thiocyanate single crystals Type Journal Article
  Year 1992 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 1121 Issue 3 Pages 269-278  
  Keywords Animals; Crystallization; Horses; Kinetics; Methemoglobin/*chemistry; Solutions; Spectrum Analysis; Temperature; Thiocyanates/*chemistry  
  Abstract Association equilibria and association kinetics of the thiocyanate binding reaction to methemoglobin in single crystals and solution are studied using temperature-jump technique and polarized absorption spectroscopy. Different kinetic constants are found for the reaction in solution and crystal phase for the alpha- and beta-subunits of the methemoglobin tetramer. The reduction of the reactivity of the alpha- and beta-subunits in crystalline phase is 6-fold and 2.4-fold, respectively, compared to the values found in solution. The intramolecular binding reaction of the N epsilon of the distal histidine E7 which is observed in methemoglobin in solution cannot be detected in single crystals. Our results suggest that crystallization of hemoglobin has little influence on small-scale structural fluctuations which are necessary for ligands to get to the binding sites and large-scale structural motions are suppressed.  
  Address Institut fur Biophysik, Ruhr-Universitat Bochum, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1627604 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3800  
Permanent link to this record
 

 
Author Steinhoff, H.J.; Lieutenant, K.; Redhardt, A. openurl 
  Title Conformational transition of aquomethemoglobin: intramolecular histidine E7 binding reaction to the heme iron in the temperature range between 220 K and 295 K as seen by EPR and temperature-jump measurements Type Journal Article
  Year 1989 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 996 Issue 1-2 Pages 49-56  
  Keywords Animals; Electron Spin Resonance Spectroscopy; Heme; Histidine; Horses; Humans; Hydrogen-Ion Concentration; Methemoglobin/*ultrastructure; Motion; Protein Conformation; Temperature; Thermodynamics; Water  
  Abstract Temperature-dependent EPR and temperature-jump measurements have been carried out, in order to examine the high-spin to low-spin transition of aquomethemogobin (pH 6.0). Relaxation rates and equilibrium constants could be determined as a function of temperature. As a reaction mechanism for the high-spin to low-spin transition, the binding of N epsilon of His E7 to the heme iron had been proposed; the same mechanism had been suggested for the ms-effect, found in temperature-jump experiments on aquomethemoglobin. A comparison of the thermodynamic quantities, deduced form the measurements in this paper, gives evidence that indeed the same reaction is investigated in both cases. Our results and most of the findings of earlier studies on the spin-state transitions of aquomethemoglobin, using susceptibility, optical, or EPR measurements, can be explained by the transition of methemoglobin with H2O as ligand (with high-spin state at all temperatures) and methemoglobin with ligand N epsilon of His E7 (with a low-spin ground state). Thermal fluctuations of large amplitude have to be postulated for the reaction to take place, so this reaction may be understood as a probe for the study of protein dynamics.  
  Address Institut fur Biophysik, Ruhr-Universitat Bochum, F.R.G  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:2544230 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3803  
Permanent link to this record
 

 
Author Dyson, H.J.; Beattie, J.K. openurl 
  Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
  Year 1982 Publication The Journal of Biological Chemistry Abbreviated Journal J Biol Chem  
  Volume 257 Issue 5 Pages 2267-2273  
  Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature  
  Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6277891 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3807  
Permanent link to this record
 

 
Author Czerlinski, G.H.; Erickson, J.O.; Theorell, H. openurl 
  Title Chemical relaxation studies on the horse liver alcohol dehydrogenase system Type Journal Article
  Year 1979 Publication Physiological Chemistry and Physics Abbreviated Journal Physiol Chem Phys  
  Volume 11 Issue 6 Pages 537-569  
  Keywords Alcohol Oxidoreductases/*metabolism; Animals; Buffers; Electron Transport; Ethanol/metabolism; Horses; Hydrogen-Ion Concentration; Liver/*enzymology; Mathematics; NAD/metabolism; Oscillometry; Osmolar Concentration; Temperature; Time Factors  
  Abstract Chemical relaxation studies on the system horse liver alcohol dehydrogenase, nicotinamide adenine dinucleotide, and ethanol were conducted observing fluorescence changes between 400 and 500 nm. Temperature-jump experiments were performed at pH 6.5, 7.0, 8.0, and 9.0; concentration-jump experiments at pH 9.0. The reciprocal of the slowest relaxation time was found to be linearly dependent upon the enzyme concentration for relatively low enzyme concentrations, as predicted earlier. Use of the wide pH-range necessitated expression of the four apparent dissociation constants of the catalytic reaction cycle in terms of pH-independent constants. The system was described in terms of only one (or two) catalysis-linked protons not associated with the electron transfer. Protonic steps in a buffered system are in rapid equilibrium, too fast to be measured with the equipment available. Assuming only two of the four bimolecular reaction steps in the four-step cycle are fast compared to the remaining two, six cases may be considered with six expressions for the reciprocal of the slowest relaxation time. Comparison with the experimental data revealed that the bimolecular reaction steps governing the slowest relaxation time change with pH. Above the effective time resolution of the temperature-lump instrument with fluorescence detection (0.1 msec) only one other relaxation time was detectable and only at pH 9. This relaxation time, found to be independent of the concentration of all reactants within experimental error (r = 10 +/- 5 msec), is most likely due to an interconversion among ternary complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9325 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:44918 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3813  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Bayley, P.; Martin, S.; Anson, M. openurl 
  Title Temperature-jump circular dichroism: observation of chiroptical relaxation processes at millisecond time resolution Type Journal Article
  Year 1975 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun  
  Volume 66 Issue 1 Pages 303-308  
  Keywords *Alcohol Oxidoreductases/metabolism; Animals; Circular Dichroism; Horses; Kinetics; Liver/enzymology; Mathematics; Protein Conformation; Temperature; Time Factors  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-291X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1172440 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print