toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rogers, L.J. doi  openurl
  Title (up) A Matter of Degree: Strength of Brain Asymmetry and Behaviour Type
  Year 2017 Publication Symmetry Abbreviated Journal Symmetry  
  Volume Issue Pages  
  Keywords functional asymmetry; strength of lateralization; direction of lateralization; advantages; disadvantages; vertebrate species; limb preference; eye bias  
  Abstract Research on a growing number of vertebrate species has shown that the left and right sides of the brain process information in different ways and that lateralized brain function is expressed in both specific and broad aspects of behaviour. This paper reviews the available evidence relating strength of lateralization to behavioural/cognitive performance. It begins by considering the relationship between limb preference and behaviour in humans and primates from the perspectives of direction and strength of lateralization. In birds, eye preference is used as a reflection of brain asymmetry and the strength of this asymmetry is associated with behaviour important for survival (e.g., visual discrimination of food from non-food and performance of two tasks in parallel). The same applies to studies on aquatic species, mainly fish but also tadpoles, in which strength of lateralization has been assessed as eye preferences or turning biases. Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts. Brief discussion of interhemispheric communication follows together with discussion of experiments that examined the effects of sectioning pathways connecting the left and right sides of the brain, or of preventing the development of these left-right connections. The conclusion reached is that degree of functional lateralization affects behaviour in quite similar ways across vertebrate species. Although the direction of lateralization is also important, in many situations strength of lateralization matters more. Finally, possible interactions between asymmetry in different sensory modalities is considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Symmetry  
  Series Volume 9 Series Issue 4 Edition  
  ISSN 2073-8994 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6167  
Permanent link to this record
 

 
Author Reddon, A.R.; Hurd, P.L. url  doi
openurl 
  Title (up) Acting unilaterally: Why do animals with strongly lateralized brains behave differently than those with weakly lateralized brains? Type Journal Article
  Year 2009 Publication Bioscience Hypotheses Abbreviated Journal  
  Volume 2 Issue 6 Pages 383-387  
  Keywords Cerebral lateralization; Individual variation; Personality; Habenula; Dorsal-diencephalic conduction system  
  Abstract Cerebral lateralization was once thought to be unique to humans, but is now known to be widespread among the vertebrates. Lateralization appears to confer cognitive advantages upon those that possess it. Despite the taxonomic ubiquity and described advantages of lateralization, substantial individual variation exists in all species. Individual variation in cerebral lateralization may be tied to individual variation in behaviour and the selective forces that act to maintain variation in behaviour may also act to maintain variation in lateralization. The mechanisms linking individual variation in the strength of cerebral lateralization to individual variation in behaviour remain obscure. We propose here a general hypothesis which may help to explain this link. We suggest that individuals with strong and weak lateralizations behave differently because of differences in the ability of one hemisphere to inhibit the functions of the other in each type of brain organization. We also suggest a specific mechanism involving the asymmetric epithalamic nucleus, the habenula. We conclude by discussing some predictions and potential tests of our hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-2392 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5417  
Permanent link to this record
 

 
Author Goursot, C.; Düpjan, S.; Puppe, B.; Leliveld, L.M.C. url  doi
openurl 
  Title (up) Affective styles and emotional lateralization: A promising framework for animal welfare research Type Journal Article
  Year 2021 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 237 Issue Pages 105279  
  Keywords Individuality; Motor lateralization; Hemispheric dominance; Motivational tendencies; Emotional reactivity; Emotional regulation  
  Abstract The growing recognition of animals as individuals has broader implications for farm animal welfare research. Even under highly standardized on-farm conditions, farm animals show heterogeneous but individually consistent behavioural patterns towards various stimuli, based on how they appraise these stimuli. As a result, animal welfare is likely to be highly individual as well, and studying the proximate mechanisms underlying distinct individual behaviour patterns and appraisal will improve animal welfare research. We propose to extend the framework of affective styles to bridge the gap between existing research fields on animal personality and affective states. Affective styles refer to consistent individual differences in emotional reactivity and regulation and can be predicted by baseline cerebral lateralization. Likewise, animals with consistent left or right motor biases--a proxy measure of individual patterns in cerebral lateralization--have been shown to differ in their personality, emotional reactivity, motivational tendencies or coping styles. In this paper, we present the current knowledge of the links between laterality and stable individual traits in behaviour and affect in light of hypotheses on emotional lateralization. Within our suggested framework, we make recommendations on how to investigate affective styles in non-human animals and give practical examples. This approach has the potential to promote a science of affective styles in nonhuman animals and significantly advance research on animal welfare.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6698  
Permanent link to this record
 

 
Author Rogers, L. doi  openurl
  Title (up) Asymmetry of Motor Behavior and Sensory Perception: Which Comes First? Type Journal Article
  Year 2020 Publication Symmetrie Abbreviated Journal Symmetrie  
  Volume 12 Issue 5 Pages 690  
  Keywords development; motor asymmetry; visual lateralization; human fetus; chick embryo; sensory-motor interaction  
  Abstract By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6610  
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. url  doi
openurl 
  Title (up) Behavioural lateralization in sheep (Ovis aries) Type Journal Article
  Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 184 Issue 1 Pages 72-80  
  Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization  
  Abstract This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6701  
Permanent link to this record
 

 
Author Neveu, P.J. url  doi
openurl 
  Title (up) Brain Lateralization and Immunomodulation Type Journal Article
  Year 1993 Publication International Journal of Neuroscience Abbreviated Journal Int J Neurosci  
  Volume 70 Issue 1-2 Pages 135-143  
  Keywords Psychoneuroimmunology, brain lateralization  
  Abstract The two sides of the brain may be differently involved in the modulation of immune responses as demonstrated by lesional and behavioral approaches in rodents. Lesions of right or left neocortex induced opposite effects on various immune parameters including mitogen-induced lymphoproliferation, interleukin-2 production, macrophage activation or natural killer cell activity. This animal model, useful to elucidate whereby the brain and the immune system can communicate, appears to be suitable for studying the immune perturbations observed during stroke in humans. Brain asymmetry in modulation of immune reactivity may also be demonstrated in intact animal using a behavioral paradigm. The direction of a lateralized motor behavior ie paw preference in a food reaching task, correlated with an asymmetrical brain organization, was shown to be associated with lymphocyte reactivity, natural killer cell activity and auto-antibody production. The association between paw preference and immune reactivity in mice varies according to the immune parameters tested and is a sex-dependent phenomenon in which genetic background may be involved. The experimental models for investigating asymmetrical brain modulation of the immune system should be useful for studying several physiological, pathological and genetic aspects of neuroimmunomodulation.  
  Address  
  Corporate Author Thesis  
  Publisher Informa Clin Med Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7454 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.3109/00207459309000569 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5778  
Permanent link to this record
 

 
Author Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Dimatteo, S.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title (up) Catecholamine plasma levels following immune stimulation with rabies vaccine in dogs selected for their paw preferences Type Journal Article
  Year 2010 Publication Neuroscience Letters Abbreviated Journal  
  Volume 476 Issue 3 Pages 142-145  
  Keywords Physiology; Behavior; Lateralization; Catecholamines; Paw preference; Neuro-immune-modulation  
  Abstract Epinephrine and norepinephrine plasma levels were assessed in dogs in relation to paw preference following an immune challenge with rabies vaccine. The results showed that both catecholamines increased after the vaccine administration, confirming the main role of the sympathetic nervous system in the modulation activity between the brain and the immune system. Moreover, ambidextrous dogs showed a significantly higher increase of epinephrine levels 8 days after immunization with respect to right- and left-pawed dogs, suggesting that the biological activity of this molecule could be key for a different immune response with regard to laterality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5788  
Permanent link to this record
 

 
Author Marinsek, N.L.; Gazzaniga, M.S.; Miller, M.B. url  doi
isbn  openurl
  Title (up) Chapter 17 – Split-Brain, Split-Mind Type Book Chapter
  Year 2016 Publication The Neurology of Conciousness (Second Edition) Abbreviated Journal  
  Volume Issue Pages 271-279  
  Keywords Split-brain; consciousness; lateralization; modular; left hemisphere interpreter  
  Abstract The corpus callosum anatomically and functionally connects the two cerebral hemispheres. Despite its important role in interhemispheric communication however, severing the corpus callosum produces few--if any--noticeable cognitive or behavioral abnormalities. Incredibly, split-brain patients do not report any drastic changes in their conscious experience even though nearly all interhemispheric communication ceases after surgery. Extensive research has shown that both hemispheres remain conscious following disconnection and the conscious experience of each hemisphere is private and independent of the other. Additionally, the conscious experiences of the hemispheres appear to be qualitatively different, such that the consciousness of the left hemisphere is more enriched than the right. In this chapter, we offer explanations as to why split-brain patients feel unified despite possessing dual conscious experiences and discuss how the divided consciousness of split-brain patients can inform current theories of consciousness.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication San Diego Editor Laureys, S.; Gosseries, O.; Tononi, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-800948-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6648  
Permanent link to this record
 

 
Author Baragli, P.; Vitale, V.; Paoletti, E.; Sighieri, C.; Reddon, A.R. url  doi
openurl 
  Title (up) Detour behaviour in horses (Equus caballus) Type Journal Article
  Year 2011 Publication Journal of Ethology Abbreviated Journal J. Ethol.  
  Volume 29 Issue 2 Pages 227-234  
  Keywords Detour behaviour; Equus caballus; Horses; Lateralization; Spatial reasoning  
  Abstract The objective of this study was to investigate the ability of horses (Equus caballus) to detour around symmetric and asymmetric obstacles. Ten female Italian saddle horses were each used in three detour tasks. In the first task, the ability to detour around a symmetrical obstacle was evaluated; in the second and third tasks subjects were required to perform a detour around an asymmetrical obstacle with two different degrees of asymmetry. The direction chosen to move around the obstacle and time required to make the detour were recorded. The results suggest that horses have the spatial abilities required to perform detour tasks with both symmetric and asymmetric obstacles. The strategy used to perform the task varied between subjects. For five horses, lateralized behaviour was observed when detouring the obstacle; this was consistently in one direction (three on the left and two on the right). For these horses, no evidence of spatial learning or reasoning was found. The other five horses did not solve this task in a lateralized manner, and a trend towards decreasing lateralization was observed as asymmetry, and hence task difficulty, increased. These non-lateralized horses may have higher spatial reasoning abilities.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Japan Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0771 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5686  
Permanent link to this record
 

 
Author Vallortigara, G.; Andrew, R.J. url  doi
openurl 
  Title (up) Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
  Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 33 Issue 1-2 Pages 41-57  
  Keywords Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick  
  Abstract Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5341  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print