toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F. openurl 
  Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
  Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 33 Issue 4 Pages 410-415  
  Keywords Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing  
  Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.  
  Address Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11469776 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3787  
Permanent link to this record
 

 
Author Morales, J.L.; Manchado, M.; Vivo, J.; Galisteo, A.M.; Aguera, E.; Miro, F. openurl 
  Title Angular kinematic patterns of limbs in elite and riding horses at trot Type Journal Article
  Year 1998 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 30 Issue 6 Pages 528-533  
  Keywords Animals; Biomechanics; Breeding; Extremities/*physiology; Gait/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Joints/*physiology; Male; Video Recording  
  Abstract Normal speed videography was used to determine the angular parameters of 28 Spanish Thoroughbreds at trot. Horses were divided into 3 groups: Group UT, comprising 9 animals (provided by the VII National Stud, Cordoba, Spain) which had undergone no specific training programme and which were hand led at the trot; Group T, formed by 19 horses considered to be highly bred and trained, and which were also hand led; and Group RT, comprising the same horses as the latter group but this time trotted by a rider. Each animal was filmed 6 times from the right-hand side, using a Hi8 (25 Hz) video camera. Angular parameters for fore- and hindlimb joints were measured in each stride from computer-grabbed frames and entered into a spreadsheet for calculation; parameters included maximum and minimum angles, range of motion, and angles at landing, lift off and maximum hoof height; the times at which maximum angle, minimum angle, lift off and maximum hoof height occurred were calculated as percentages of total stride duration. Stride velocity (mean [s.d.]) was 4.01 (0.62), 3.60 (0.34) and 3.07 (0.36) m/s for Groups UT, T and RT, respectively. Data were then compared between Groups UT-T and Groups T-RT. Compared with Group UT, horses from Group T featured a shorter stance percentage (P<0.001) in both fore- and hindlimbs. The range of motion in forelimbs was smaller (P<0.05), due to lower retraction (P<0.001); moreover, maximum retraction appeared earlier (P<0.05). Greater scapular inclination was in evidence (P<0.05) and the shoulder joint extended further (P<0.05). Fore- and hind fetlock joints revealed a relatively shorter hyperextension period during the stance phase (P<0.01). Compared with Group T, horses from Group RT had a longer stance percentage, with belated maximum retraction of the fore- and hindlimbs. The range of movement in scapular inclination was greater (P<0.05), due to a smaller minimum angle (P<0.01), and the shoulder joint flexed more (P<0.05). The elbow joint extended more and for longer during the stance phase. Initial extension of the hip joint (P<0.05) and tarsus (P<0.001) lasted longer. The carpal and fore and hind fetlock joints recorded relatively longer hyperextension times, in addition to greater hyperextension during the stance phase. The results from the present study suggest that rider-effect must be taken in consideration when well gaited horses are selected for dressage purposes.  
  Address Department of Compared Anatomy and Pathology, University of Cordoba, Veterinary Faculty, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9844972 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3734  
Permanent link to this record
 

 
Author Ratzlaff, M.H.; Wilson, P.D.; Hyde, M.L.; Balch, O.K.; Grant, B.D. openurl 
  Title Relationship between locomotor forces, hoof position and joint motion during the support phase of the stride of galloping horses Type Journal Article
  Year 1993 Publication Acta Anatomica Abbreviated Journal Acta Anat (Basel)  
  Volume 146 Issue 2-3 Pages 200-204  
  Keywords Animals; Equipment Design; Hoof and Claw/*physiology; Horses/*physiology; Joints/*physiology; *Locomotion; Motor Activity/*physiology; Physiology/instrumentation; *Posture; Shoes; Transducers  
  Abstract Three methods were used simultaneously to determine the relationships between the vertical forces exerted on the hooves and the positions of the limbs and hooves at the times of peak vertical forces from 2 horses galloping on a track straightaway. Vertical forces were recorded from an instrumented shoe, fetlock joint motion was measured with an electrogoniometer and the angles of the carpus, fetlock and hoof were determined from slow-motion films. At hoof contact, the mean angles of the carpus and fetlock were 181-182 degrees and 199-206 degrees, respectively. Peak vertical forces on the heel occurred at or near maximum extension of the carpal and fetlock joints. Peak forces on the toe occurred during flexion of the fetlock joint and at mean hoof angles of 28-31 degrees from the horizontal. The mean angles of the hoof from the horizontal at the time of heel contact were 6-7 degrees. Hoof lift occurred at mean carpal angles of 173-174 degrees and mean fetlock angles of 199-200 degrees.  
  Address Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-5180 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8470468 Approved no  
  Call Number refbase @ user @ Serial 1945  
Permanent link to this record
 

 
Author Takahashi, T.; Kasashima, Y.; Eto, D.; Mukai, K.; Hiraga, A. openurl 
  Title Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 435-439  
  Keywords Animals; Biomechanics; Exercise Test/veterinary; Female; Forelimb/physiology; Hoof and Claw/physiology; Horses/*physiology; Male; Physical Conditioning, Animal/*methods/*physiology; Tarsal Joints/*physiology; Tarsus, Animal; Tendon Injuries/etiology/prevention & control/veterinary; Time Factors  
  Abstract REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.  
  Address Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402462 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print