toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Macfadden, B.J. doi  openurl
  Title Evolution. Fossil horses--evidence for evolution Type Journal Article
  Year 2005 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 307 Issue 5716 Pages 1728-1730  
  Keywords Animals; Body Size; DNA, Mitochondrial; Diet; *Equidae/anatomy & histology/classification/genetics; *Evolution; Feeding Behavior; *Fossils; *Horses/anatomy & histology/classification/genetics; Paleodontology; Phylogeny; Time; Tooth/anatomy & histology  
  Abstract  
  Address Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. bmacfadd@flmnh.ufl.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15774746 Approved no  
  Call Number (up) Serial 1892  
Permanent link to this record
 

 
Author Barrett, L.; Henzi, P. doi  openurl
  Title The social nature of primate cognition Type Journal Article
  Year 2005 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 272 Issue 1575 Pages 1865-1875  
  Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/*physiology; *Evolution; Intelligence/*physiology; Primates/*physiology; *Social Behavior  
  Abstract The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  
  Address School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. louiseb@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16191591 Approved no  
  Call Number (up) Serial 2086  
Permanent link to this record
 

 
Author Joffe, T.H.; Dunbar, R.I. doi  openurl
  Title Visual and socio-cognitive information processing in primate brain evolution Type Journal Article
  Year 1997 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 264 Issue 1386 Pages 1303-1307  
  Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/physiology; *Evolution; Geniculate Bodies/anatomy & histology/physiology; Humans; Mental Processes/physiology; Neocortex/physiology; Primates/anatomy & histology/*physiology/*psychology; *Social Behavior; Visual Cortex/anatomy & histology/physiology  
  Abstract Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.  
  Address School of Life Sciences, University of Liverpool, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9332015 Approved no  
  Call Number (up) Serial 2095  
Permanent link to this record
 

 
Author Dunbar, R.I.M. doi  openurl
  Title Male and female brain evolution is subject to contrasting selection pressures in primates Type Journal Article
  Year 2007 Publication BMC Biology Abbreviated Journal BMC Biol  
  Volume 5 Issue Pages 21  
  Keywords Animals; *Brain/physiology; *Evolution; Female; Humans; Male; *Selection (Genetics); *Sex Characteristics  
  Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the “social brain” hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative) is related most closely to neocortex volume, but male sociality (which is more competitive and combative) is more closely related to subcortical units (notably those associated with emotional responses). Thus different brain units have responded to different selection pressures.  
  Address British Academy Centenary Research Project, School of Biological Sciences, University of Liverpool, Liverpool, UK. rimd@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1741-7007 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17493267 Approved no  
  Call Number (up) Serial 2100  
Permanent link to this record
 

 
Author Danchin, E.; Giraldeau, L.-A.; Valone, T.J.; Wagner, R.H. doi  openurl
  Title Public information: from nosy neighbors to cultural evolution Type Journal Article
  Year 2004 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 305 Issue 5683 Pages 487-491  
  Keywords Animals; *Behavior, Animal; Cues; *Cultural Evolution; *Decision Making; Environment; Evolution; Feeding Behavior; Female; Genes; Humans; Male; Reproduction; Sexual Behavior, Animal  
  Abstract Psychologists, economists, and advertising moguls have long known that human decision-making is strongly influenced by the behavior of others. A rapidly accumulating body of evidence suggests that the same is true in animals. Individuals can use information arising from cues inadvertently produced by the behavior of other individuals with similar requirements. Many of these cues provide public information about the quality of alternatives. The use of public information is taxonomically widespread and can enhance fitness. Public information can lead to cultural evolution, which we suggest may then affect biological evolution.  
  Address U.P.M.C. CNRS-UMR7625, Bat A-7e etage-Case 237, 7 quai Saint Bernard, 75252 Paris Cedex 05, France. edanchin@snv.jussieu.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15273386 Approved no  
  Call Number (up) Serial 2131  
Permanent link to this record
 

 
Author Reader, S.M.; Laland, K.N. doi  openurl
  Title Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
  Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 99 Issue 7 Pages 4436-4441  
  Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior  
  Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.  
  Address Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11891325 Approved no  
  Call Number (up) Serial 2149  
Permanent link to this record
 

 
Author Watanabe, S.; Huber, L. doi  openurl
  Title Animal logics: decisions in the absence of human language Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 235-245  
  Keywords *Animal Communication; Animals; Behavior, Animal/*physiology; Brain/physiology; Cognition/*physiology; Decision Making/*physiology; Evolution; Humans; *Language; *Logic; Problem Solving/physiology  
  Abstract Without Abstract  
  Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo 108, Japan. swat@flet.keio.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909231 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2453  
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H. doi  openurl
  Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
  Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull  
  Volume 70 Issue 2 Pages 124-157  
  Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves  
  Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.  
  Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16782503 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2623  
Permanent link to this record
 

 
Author Caldwell, C.A.; Whiten, A. doi  openurl
  Title Evolutionary perspectives on imitation: is a comparative psychology of social learning possible? Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 4 Pages 193-208  
  Keywords Animals; *Behavior, Animal; Evolution; Humans; *Imitative Behavior; Learning; Models, Animal  
  Abstract Studies of imitation in animals have become numerous in recent times, but do they contribute to a comparative psychology of social learning? We review this burgeoning field to identify the problems and prospects for such a goal. Difficulties of two main kinds are identified. First, researchers have tackled questions about social learning from at least three very different theoretical perspectives, the “phylogenetic”, “animal model”, and “adaptational”. We examine the conflicts between them and consider the scope for integration. A second difficulty arises in the methodological approaches used in the discipline. In relation to one of these – survey reviews of published studies – we tabulate and compare the contrasting conclusions of nine articles that together review 36 studies. The basis for authors' disagreements, including the matters of perceptual opacity, novelty, sequential structure, and goal representation, are examined. In relation to the other key method, comparative experimentation, we identify 12 studies that have explicitly compared species' imitative ability on similar tasks. We examine the principal problems of comparing like with like in these studies and consider solutions, the most powerful of which we propose to be the use of a systematic range of task designs, rather than any single “gold standard” task.  
  Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG, UK. C.A.Caldwell@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12461597 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2593  
Permanent link to this record
 

 
Author Tebbich, S.; Bshary, R.; Grutter, A.S. doi  openurl
  Title Cleaner fish Labroides dimidiatus recognise familiar clients Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 3 Pages 139-145  
  Keywords Adaptation, Physiological; Animals; *Evolution; *Fishes; Motivation; *Recognition (Psychology); Social Behavior; Visual Perception  
  Abstract Individual recognition has been attributed a crucial role in the evolution of complex social systems such as helping behaviour and cooperation. A classical example for interspecific cooperation is the mutualism between the cleaner fish Labroides dimidiatus and its client reef fish species. For stable cooperation to evolve, it is generally assumed that partners interact repeatedly and remember each other's past behaviour. Repeated interactions may be achieved by site fidelity or individual recognition. However, as some cleaner fish have more than 2,300 interactions per day with various individuals per species and various species of clients, basic assumptions of cooperation theory might be violated in this mutualism. We tested the cleaner L. dimidiatus and its herbivorous client, the surgeon fish Ctenochaetus striatus, for their ability to distinguish between a familiar and an unfamiliar partner in a choice experiment. Under natural conditions, cleaners and clients have to build up their relationship, which is probably costly for both. We therefore predicted that both clients and cleaners should prefer the familiar partner in our choice experiment. We found that cleaners spent significantly more time near the familiar than the unfamiliar clients in the first 2 minutes of the experiment. This indicates the ability for individual recognition in cleaners. In contrast, the client C. striatus showed no significant preference. This could be due to a sampling artefact, possibly due to a lack of sufficient motivation. Alternatively, clients may not need to recognise their cleaners but instead remember the defined territories of L. dimidiatus to achieve repeated interactions with the same individual.  
  Address Max Planck Institute for Behaviour and Physiology, 82319 Seewiesen, Germany. tebbich@ss20.mpi-seewiesen.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12357286 Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 2599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print