toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marfin, A.A.; Petersen, L.R.; Eidson, M.; Miller, J.; Hadler, J.; Farello, C.; Werner, B.; Campbell, G.L.; Layton, M.; Smith, P.; Bresnitz, E.; Cartter, M.; Scaletta, J.; Obiri, G.; Bunning, M.; Craven, R.C.; Roehrig, J.T.; Julian, K.G.; Hinten, S.R.; Gubler, D.J. openurl 
  Title Widespread West Nile virus activity, eastern United States, 2000 Type Journal Article
  Year 2001 Publication Emerging Infectious Diseases Abbreviated Journal Emerg Infect Dis  
  Volume 7 Issue 4 Pages 730-735  
  Keywords Animals; Bird Diseases/epidemiology/virology; Culicidae/virology; *Disease Outbreaks; Ecology; Horse Diseases/epidemiology/virology; Horses; Humans; Population Surveillance; Songbirds/virology; United States/epidemiology; West Nile Fever/*epidemiology/veterinary/virology; *West Nile virus  
  Abstract (up) In 1999, the U.S. West Nile (WN) virus epidemic was preceded by widespread reports of avian deaths. In 2000, ArboNET, a cooperative WN virus surveillance system, was implemented to monitor the sentinel epizootic that precedes human infection. This report summarizes 2000 surveillance data, documents widespread virus activity in 2000, and demonstrates the utility of monitoring virus activity in animals to identify human risk for infection.  
  Address Division of Vector-Borne Infections Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Fort Collins, CO 80522, USA. aam@cdc.gov  
  Corporate Author ArboNET Cooperative Surveillance Group Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1080-6040 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11585539 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2646  
Permanent link to this record
 

 
Author Dargatz, D.A.; Traub-Dargatz, J.L. doi  openurl
  Title Multidrug-resistant Salmonella and nosocomial infections Type Journal Article
  Year 2004 Publication The Veterinary Clinics of North America. Equine Practice Abbreviated Journal Vet Clin North Am Equine Pract  
  Volume 20 Issue 3 Pages 587-600  
  Keywords Animals; Anti-Bacterial Agents/*pharmacology; Cross Infection/prevention & control/*veterinary; Disease Outbreaks/prevention & control/veterinary; Drug Resistance, Bacterial; *Drug Resistance, Multiple, Bacterial; Horse Diseases/*drug therapy/transmission; Horses; Infection Control/methods; Microbial Sensitivity Tests/veterinary; Salmonella/*drug effects; Salmonella Infections, Animal/*drug therapy/transmission  
  Abstract (up) Nosocomial infections are a serious threat to optimum patient care. In addition, nosocomial infections can have far-reaching consequences for the hospital personnel and the financial aspects of the hospital. Nosocomial infections with Salmonella spp have been described among hospitalized equine populations more frequently than any other agent. Salmonella spp associated with hospitalized equids often possess more antimicrobial resistance determinants than do Salmonella spp isolated from healthy horses in the general population. There is little evidence to suggest that resistant salmonellae are more virulent than nonresistant forms. MDR forms of Salmonella complicate the selection of appropriate antimicrobials when they are indicated, however. Furthermore, the use of some antimicrobials may apply selection pressure toward enhanced ability of MDR Salmonella to colonize equine patients. Further research should help to elucidate the risky uses of antimicrobials in the hospital setting and define the role of disinfectants and treatments such as NSAIDs in the ecology of MDR forms of nosocomial infections, including Salmonella. In the meantime, thoughtful selection of when and how to use antimicrobials in equine patients, together with deliberate selection of which antimicrobials to use based on monitoring data and other factors, such as safety and spectrum, is advised.  
  Address Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, United States Department of Agriculture, 2150 Centre Avenue, Building MS 2E7, Fort Collins, CO 80521, USA. david.a.dargatz@aphis.usda.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-0739 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15519820 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2632  
Permanent link to this record
 

 
Author Cilnis, M.J.; Kang, W.; Weaver, S.C. doi  openurl
  Title Genetic conservation of Highlands J viruses Type Journal Article
  Year 1996 Publication Virology Abbreviated Journal Virology  
  Volume 218 Issue 2 Pages 343-351  
  Keywords Alphavirus/*genetics; Alphavirus Infections/transmission/veterinary/virology; Amino Acid Sequence; Animals; Base Sequence; Conserved Sequence; Disease Outbreaks; Encephalitis, Viral/veterinary/virology; *Evolution, Molecular; Horses; Molecular Sequence Data; Phylogeny; RNA, Viral/genetics; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Nucleic Acid; Turkeys; Variation (Genetics)/*genetics  
  Abstract (up) We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.  
  Address Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-6822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8610461 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2657  
Permanent link to this record
 

 
Author Dauphin, G.; Zientara, S.; Zeller, H.; Murgue, B. doi  openurl
  Title West Nile: worldwide current situation in animals and humans Type Journal Article
  Year 2004 Publication Comparative Immunology, Microbiology and Infectious Diseases Abbreviated Journal Comp Immunol Microbiol Infect Dis  
  Volume 27 Issue 5 Pages 343-355  
  Keywords Americas/epidemiology; Animals; Birds/virology; Culex/*virology; *Disease Outbreaks; Disease Reservoirs; Europe/epidemiology; Horses/virology; Humans; Insect Vectors/*virology; Middle East/epidemiology; West Nile Fever/*epidemiology/*veterinary/virology; West Nile virus/*growth & development  
  Abstract (up) West Nile (WN) virus is a mosquito-borne flavivirus that is native to Africa, Europe, and Western Asia. It mainly circulates among birds, but can infect many species of mammals, as well as amphibians and reptiles. Epidemics can occur in rural as well as urban areas. Transmission of WN virus, sometimes involving significant mortality in humans and horses, has been documented at erratic intervals in many countries, but never in the New World until it appeared in New York City in 1999. During the next four summers it spread with incredible speed to large portions of 46 US states, and to Canada, Mexico, Central America and the Caribbean. In many respects, WN virus is an outstanding example of a zoonotic pathogen that has leaped geographical barriers and can cause severe disease in human and equine. In Europe, in the past two decades there have been a number of significant outbreaks in several countries. However, very little is known of the ecology and natural history of WN virus transmission in Europe and most WN outbreaks in humans and animals remain unpredictable and difficult to control.  
  Address AFSSA Alfort, UMR1161 (INRA-AFSSA-ENVA), 22 rue Pierre Curie, BP 63, 94703 Maisons-Alfort Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0147-9571 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15225984 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2635  
Permanent link to this record
 

 
Author Munoz-Sanz, A. openurl 
  Title [Christopher Columbus flu. A hypothesis for an ecological catastrophe] Type Journal Article
  Year 2006 Publication Enfermedades Infecciosas y Microbiologia Clinica Abbreviated Journal Enferm Infecc Microbiol Clin  
  Volume 24 Issue 5 Pages 326-334  
  Keywords Animals; Atlantic Islands; Birds; Chickens; Disease Outbreaks/*history; Disease Reservoirs; Disease Susceptibility; Ecology; Europe/ethnology; History, 15th Century; Horses; Humans; Indians, South American; Influenza A virus/classification/genetics/pathogenicity; Influenza in Birds/epidemiology/history/transmission/virology; Influenza, Human/epidemiology/*history/mortality/transmission; Models, Biological; Orthomyxoviridae Infections/epidemiology/history/veterinary/virology; Poultry Diseases/epidemiology/history/transmission/virology; Reassortant Viruses/genetics/pathogenicity; Species Specificity; Sus scrofa; Swine Diseases/history/transmission/virology; Terminology; West Indies/epidemiology  
  Abstract (up) When Christopher Columbus and his men embarked on the second Colombian expedition to the New World (1493), the crew suffered from fever, respiratory symptoms and malaise. It is generally accepted that the disease was influenza. Pigs, horses and hens acquired in Gomera (Canary Islands) traveled in the same ship. The pigs may well have been the origin of the flu and the intermediary hosts for genetic recombination of other viral subtypes. The Caribbean archipelago had a large population of birds, the natural reservoir of the avian influenza virus. In this ecological scenario there was a concurrence of several biological elements that had never before coexisted in the New World: pigs, horses, the influenza virus and humans. We propose that birds are likely to have played an important role in the epidemiology of the flu occurring on the second Colombian trip, which caused a fatal demographic catastrophe, with an estimated mortality of 90% among the natives.  
  Address Unidad de Patologia Infecciosa, Hospital Universitario Infanta Cristina, Servicio Extremeno de Salud, Universidad de Extremadura, Badajoz, Espana. infectio@unex.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Spanish Summary Language Original Title La gripe de Cristobal Colon. Hipotesis sobre una catastrofe ecologica  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0213-005X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16762260 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2624  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print