|   | 
Details
   web
Records
Author Boucher, J.M.; Hanosset, R.; Augot, D.; Bart, J.M.; Morand, M.; Piarroux, R.; Pozet-Bouhier, F.; Losson, B.; Cliquet, F.
Title Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form Type Journal Article
Year 2005 Publication Veterinary Parasitology Abbreviated Journal Vet Parasitol
Volume 129 Issue 3-4 Pages 259-266
Keywords Animals; Base Sequence; DNA, Helminth/chemistry/genetics; Echinococcosis/parasitology/pathology/*veterinary; Echinococcus multilocularis/*isolation & purification; Electron Transport Complex IV/chemistry/genetics; France; Histocytochemistry/veterinary; Liver/parasitology/pathology; Male; Molecular Sequence Data; Polymerase Chain Reaction/veterinary; Sequence Alignment; Sus scrofa/*parasitology; Swine Diseases/*parasitology/pathology
Abstract Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
Address AFSSA Nancy, Laboratoire d'Etudes et de Recherches sur la Rage et la Pathologie des Animaux Sauvages, Domaine de Pixerecourt-B.P. 9, Malzeville F 54220, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4017 ISBN Medium
Area Expedition Conference
Notes PMID:15845281 Approved no
Call Number Equine Behaviour @ team @ Serial 2629
Permanent link to this record
 

 
Author Cilnis, M.J.; Kang, W.; Weaver, S.C.
Title Genetic conservation of Highlands J viruses Type Journal Article
Year 1996 Publication Virology Abbreviated Journal Virology
Volume 218 Issue 2 Pages 343-351
Keywords Alphavirus/*genetics; Alphavirus Infections/transmission/veterinary/virology; Amino Acid Sequence; Animals; Base Sequence; Conserved Sequence; Disease Outbreaks; Encephalitis, Viral/veterinary/virology; *Evolution, Molecular; Horses; Molecular Sequence Data; Phylogeny; RNA, Viral/genetics; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Nucleic Acid; Turkeys; Variation (Genetics)/*genetics
Abstract We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.
Address Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-6822 ISBN Medium
Area Expedition Conference
Notes PMID:8610461 Approved no
Call Number Equine Behaviour @ team @ Serial 2657
Permanent link to this record
 

 
Author Hostikka, S.L.; Eddy, R.L.; Byers, M.G.; Hoyhtya, M.; Shows, T.B.; Tryggvason, K.
Title Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome Type Journal Article
Year 1990 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 87 Issue 4 Pages 1606-1610
Keywords Amino Acid Sequence; Base Sequence; Chromosome Mapping; Cloning, Molecular; Collagen/*genetics; Epitopes/analysis; Female; Fluorescent Antibody Technique; Gene Library; *Genes; Humans; Immunoblotting; Kidney/cytology/*metabolism; Macromolecular Substances; Molecular Sequence Data; Nephritis, Hereditary/*genetics; Oligopeptides/chemical synthesis/immunology; Placenta/metabolism; Pregnancy; Restriction Mapping; Sequence Homology, Nucleic Acid; *X Chromosome
Abstract We have identified and extensively characterized a type IV collagen alpha chain, referred to as alpha 5(IV). Four overlapping cDNA clones isolated contain an open reading frame for 543 amino acid residues of the carboxyl-terminal end of a collagenous domain, a 229-residue carboxyl-terminal noncollagenous domain, and 1201 base pairs coding for a 3' untranslated region. The collagenous Gly-Xaa-Yaa repeat sequence has five imperfections that coincide with those in the corresponding region of the alpha 1(IV) chain. The noncollagenous domain has 12 conserved cysteine residues and 83% and 63% sequence identity with the noncollagenous domains of the alpha 1(IV) and alpha 2(IV) chains, respectively. The alpha 5(IV) chain has less sequence identity with the putative bovine alpha 3(IV) and alpha 4(IV) chains. Antiserum against an alpha 5(IV) synthetic peptide stained a polypeptide chain of about 185 kDa by immunoblot analysis and immunolocalization of the chain in human kidney was almost completely restricted to the glomerulus. The gene was assigned to the Xq22 locus by somatic cell hybrids and in situ hybridization. This may be identical or close to the locus of the X chromosome-linked Alport syndrome that is believed to be a type IV collagen disease.
Address Biocenter, University of Oulu, Finland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:1689491 Approved no
Call Number Equine Behaviour @ team @ Serial 5291
Permanent link to this record
 

 
Author Ishida, N.; Hirano, T.; Mukoyama, H.
Title Detection of aberrant alleles in the D-loop region of equine mitochondrial DNA by single-strand conformation polymorphism (SSCP) analysis Type Journal Article
Year 1994 Publication Animal Genetics Abbreviated Journal Anim Genet
Volume 25 Issue 4 Pages 287
Keywords *Alleles; Animals; Base Sequence; *DNA, Mitochondrial; DNA, Single-Stranded/genetics; Female; Gene Frequency; Genomic Imprinting; Horses/*genetics; Male; Molecular Sequence Data; Pedigree; *Polymorphism, Genetic
Abstract
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:7985852 Approved no
Call Number Equine Behaviour @ team @ Serial 2213
Permanent link to this record
 

 
Author Ishida, N.; Oyunsuren, T.; Mashima, S.; Mukoyama, H.; Saitou, N.
Title Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse Type Journal Article
Year 1995 Publication Journal of Molecular Evolution Abbreviated Journal J Mol Evol
Volume 41 Issue 2 Pages 180-188
Keywords Animals; Base Sequence; Chromosomes; Conserved Sequence/genetics; DNA, Mitochondrial/*genetics; Evolution; Genetic Variation/*genetics; Horses/*genetics; Molecular Sequence Data; *Phylogeny; RNA, Transfer, Pro/genetics; Sequence Alignment; Sequence Analysis, DNA
Abstract The noncoding region between tRNAPro and the large conserved sequence block is the most variable region in the mammalian mitochondrial DNA D-loop region. This variable region (ca. 270 bp) of four species of Equus, including Mongolian and Japanese native domestic horses as well as Przewalskii's (or Mongolian) wild horse, were sequenced. These data were compared with our recently published Thoroughbred horse mitochondrial DNA sequences. The evolutionary rate of this region among the four species of Equus was estimated to be 2-4 x 10(-8) per site per year. Phylogenetic trees of Equus species demonstrate that Przewalskii's wild horse is within the genetic variation among the domestic horse. This suggests that the chromosome number change (probably increase) of the Przewalskii's wild horse occurred rather recently.
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2844 ISBN Medium
Area Expedition Conference
Notes PMID:7666447 Approved no
Call Number Equine Behaviour @ team @ Serial 5042
Permanent link to this record
 

 
Author Jansen, T.; Forster, P.; Levine, M.A.; Oelke, H.; Hurles, M.; Renfrew, C.; Weber, J.; Olek, K.
Title Mitochondrial DNA and the origins of the domestic horse Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 16 Pages 10905-10910
Keywords Animals; Animals, Domestic/classification/*genetics; Base Sequence; DNA, Complementary; *DNA, Mitochondrial; *Evolution, Molecular; Horses/classification/*genetics; Molecular Sequence Data; Phylogeny
Abstract The place and date of the domestication of the horse has long been a matter for debate among archaeologists. To determine whether horses were domesticated from one or several ancestral horse populations, we sequenced the mitochondrial D-loop for 318 horses from 25 oriental and European breeds, including American mustangs. Adding these sequences to previously published data, the total comes to 652, the largest currently available database. From these sequences, a phylogenetic network was constructed that showed that most of the 93 different mitochondrial (mt)DNA types grouped into 17 distinct phylogenetic clusters. Several of the clusters correspond to breeds and/or geographic areas, notably cluster A2, which is specific to Przewalski's horses, cluster C1, which is distinctive for northern European ponies, and cluster D1, which is well represented in Iberian and northwest African breeds. A consideration of the horse mtDNA mutation rate together with the archaeological timeframe for domestication requires at least 77 successfully breeding mares recruited from the wild. The extensive genetic diversity of these 77 ancestral mares leads us to conclude that several distinct horse populations were involved in the domestication of the horse.
Address Biopsytec Analytik GmbH, Marie-Curie-Strasse 1, 53359 Rheinbach, Germany. jansen@biopsytec.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12130666 Approved no
Call Number refbase @ user @ Serial 772
Permanent link to this record
 

 
Author Traversa, D.; Giangaspero, A.; Galli, P.; Paoletti, B.; Otranto, D.; Gasser, R.B.
Title Specific identification of Habronema microstoma and Habronema muscae (Spirurida, Habronematidae) by PCR using markers in ribosomal DNA Type Journal Article
Year 2004 Publication Molecular and Cellular Probes Abbreviated Journal Mol Cell Probes
Volume 18 Issue 4 Pages 215-221
Keywords Animals; Base Sequence; DNA, Ribosomal/blood/*genetics; Feces/parasitology; Genetic Markers; Horses/*parasitology; Molecular Sequence Data; Muscidae/*genetics; Polymerase Chain Reaction; Spirurida Infections/genetics; Spiruroidea/*genetics; Stomach/*parasitology
Abstract Gastric or cutaneous habronemosis caused by Habronema microstoma Creplin, 1849 and Habronema muscae Carter, 1865 is a parasitic disease of equids transmitted by muscid flies. There is a paucity of information on the epidemiology of this disease, which is mainly due to limitations with diagnosis in the live animal and with the identification of the parasites in the intermediate hosts. To overcome such limitations, a molecular approach, based on the use of genetic markers in the second internal transcribed spacer (ITS-2) of ribosomal DNA, was established for the two species of Habronema. Characterisation of the ITS-2 revealed sequence lengths and G+C contents of 296 bp and 29.5% for H. microstoma, and of 334 bp and 35.9% for H. muscae, respectively. Exploiting the sequence difference (approximately 40%) between the two species of nematode, primers were designed and tested by the polymerase chain reaction (PCR) for their specificity using a panel of control DNA samples from common equid endoparasites, and from host tissues, faeces or muscid flies. Effective amplification from each of the two species of Habronema was achieved from as little as 10 pg of genomic DNA. Hence, this molecular approach allows the specific identification and differentiation of the DNA from H. microstoma and H. muscae, and could thus provide a molecular tool for the specific detection of Habronema DNA (irrespective of developmental stage) from faeces, skin and muscid fly samples. The establishment of this tool has important implications for the specific diagnosis of clinical cases of gastric and cutaneous habronemosis in equids, and for studying the ecology and epidemiology of the two species of Habronema.
Address Department of Biomedical Comparative Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0890-8508 ISBN Medium
Area Expedition Conference
Notes PMID:15271381 Approved no
Call Number Equine Behaviour @ team @ Serial 2634
Permanent link to this record
 

 
Author Wallner, B.; Brem, G.; Muller, M.; Achmann, R.
Title Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus Type Journal Article
Year 2003 Publication Animal Genetics Abbreviated Journal Anim Genet
Volume 34 Issue 6 Pages 453-456
Keywords Animals; Base Sequence; DNA, Mitochondrial/genetics; Genetic Variation/*genetics; Horses/classification/*genetics; Male; Molecular Sequence Data; Phylogeny; Probability; Species Specificity; Y Chromosome/*genetics
Abstract The phylogenetic relationship between Equus przewalskii and E. caballus is often a matter of debate. Although these taxa have different chromosome numbers, they do not form monophyletic clades in a phylogenetic tree based on mtDNA sequences. Here we report sequence variation from five newly identified Y chromosome regions of the horse. Two fixed nucleotide differences on the Y chromosome clearly display Przewalski's horse and domestic horse as sister taxa. At both positions the Przewalski's horse haplotype shows the ancestral state, in common with the members of the zebra/ass lineage. We discuss the factors that may have led to the differences in mtDNA and Y-chromosomal observations.
Address Institut fur Tierzucht und Genetik, Veterinarmedizinische Universitat Wien, Veterinarplatz, Wien, Austria. wallner@i122server.vu-wien.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:14687077 Approved no
Call Number Equine Behaviour @ team @ Serial 5038
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record