toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ventolini, N.; Ferrero, E.A.; Sponza, S.; Della Chiesa, A.; Zucca, P.; Vallortigara, G. url  doi
openurl 
  Title Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt Type Journal Article
  Year 2005 Publication Animal Behaviour Abbreviated Journal Anim. Behav.  
  Volume 69 Issue 5 Pages 1077-1084  
  Keywords  
  Abstract (down) We recorded preferential use of the left and right monocular visual field in black-winged stilts, Himantopus himantopus, during predatory pecking and during courtship and mating behaviour in a naturalistic setting. The stilts had a population-level preference for using their right monocular visual field before predatory pecking; pecks that followed right-hemifield detection were more likely to be successful than pecks that followed left-hemifield detection, as evinced by the occurrence of swallowing and shaking head movements after pecking. In contrast, shaking behaviour, a component of courtship displays, and copulatory attempts by males were more likely to occur when females were seen with the left monocular visual field. Asymmetric hemifield use observed in natural conditions raises interesting issues as to the costs and benefits of population-level behavioural lateralization in wild animals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5589  
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G. url  doi
openurl 
  Title Behavioural lateralization in sheep (Ovis aries) Type Journal Article
  Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.  
  Volume 184 Issue 1 Pages 72-80  
  Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization  
  Abstract (down) This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6701  
Permanent link to this record
 

 
Author Quaresmini, C.; Forrester, G.S.; Spiezio, C.; Vallortigara, G. doi  openurl
  Title Social environment elicits lateralized behaviors in gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes) Type Journal Article
  Year 2014 Publication Journal of Comparative Psychology Abbreviated Journal  
  Volume 128 Issue 3 Pages 276-284  
  Keywords *Animal Ethology; *Animal Social Behavior; *Chimpanzees; *Gorillas; *Social Influences; Cerebral Dominance; Lateral Dominance; Social Environments  
  Abstract (down) The influence of the social environment on lateralized behaviors has now been investigated across a wide variety of animal species. New evidence suggests that the social environment can modulate behavior. Currently, there is a paucity of data relating to how primates navigate their environmental space, and investigations that consider the naturalistic context of the individual are few and fragmented. Moreover, there are competing theories about whether only the right or rather both cerebral hemispheres are involved in the processing of social stimuli, especially in emotion processing. Here we provide the first report of lateralized social behaviors elicited by great apes. We employed a continuous focal animal sampling method to record the spontaneous interactions of a captive zoo-living colony of chimpanzees (Pan troglodytes) and a biological family group of peer-reared western lowland gorillas (Gorilla gorilla gorilla). We specifically focused on which side of the body (i.e., front, rear, left, right) the focal individual preferred to keep conspecifics. Utilizing a newly developed quantitative corpus-coding scheme, analysis revealed both chimpanzees and gorillas demonstrated a significant group-level preference for focal individuals to keep conspecifics positioned to the front of them compared with behind them. More interestingly, both groups also manifested a population-level bias to keep conspecifics on their left side compared with their right side. Our findings suggest a social processing dominance of the right hemisphere for context-specific social environments. Results are discussed in light of the evolutionary adaptive value of social stimulus as a triggering factor for the manifestation of group-level lateralized behaviors. (PsycINFO Database Record (c) 2016 APA, all rights reserved)  
  Address Quaresmini, Caterina: Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy, 38068, caterina.quaresmini@gmail.com  
  Corporate Author Thesis  
  Publisher American Psychological Association Place of Publication Us Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1939-2087(Electronic),0735-7036(Print) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 2014-13828-001 Serial 6396  
Permanent link to this record
 

 
Author Chiandetti, C.; Regolin, L.; Sovrano, V.A.; Vallortigara, G. doi  openurl
  Title Spatial reorientation: the effects of space size on the encoding of landmark and geometry information Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 159-168  
  Keywords Animals; Chickens/*physiology; *Feeding Behavior; Male; Orientation/*physiology; Pattern Recognition, Visual/*physiology; *Space Perception  
  Abstract (down) The effects of the size of the environment on animals' spatial reorientation was investigated. Domestic chicks were trained to find food in a corner of either a small or a large rectangular enclosure. A distinctive panel was located at each of the four corners of the enclosures. After removal of the panels, chicks tested in the small enclosure showed better retention of geometrical information than chicks tested in the large enclosure. In contrast, after changing the enclosure from a rectangular-shaped to a square-shaped one, chicks tested in the large enclosure showed better retention of landmark (panels) information than chicks tested in the small enclosure. No differences in the encoding of the overall arrangement of landmarks were apparent when chicks were tested for generalisation in an enclosure differing from that of training in size together with a transformation (affine transformation) that altered the geometric relations between the target and the shape of the environment. These findings suggest that primacy of geometric or landmark information in reorientation tasks depends on the size of the experimental space, likely reflecting a preferential use of the most reliable source of information available during visual exploration of the environment.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, Via S. Anastasio 12, 34123, Trieste, Italy. cchiandetti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17136416 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2433  
Permanent link to this record
 

 
Author Siniscalchi, M.; Lusito, R.; Vallortigara, G.; Quaranta, A. url  doi
openurl 
  Title Seeing Left- or Right-Asymmetric Tail Wagging Produces Different Emotional Responses in Dogs Type Journal Article
  Year 2013 Publication Current Biology Abbreviated Journal Curr Biol  
  Volume 23 Issue 22 Pages  
  Keywords  
  Abstract (down) Summary Left-right asymmetries in behavior associated with asymmetries in the brain are widespread in the animal kingdom [1], and the hypothesis has been put forward that they may be linked to animals’ social behavior [2, 3]. Dogs show asymmetric tail-wagging responses to different emotive stimuli [4]—the outcome of different activation of left and right brain structures controlling tail movements to the right and left side of the body. A crucial question, however, is whether or not dogs detect this asymmetry. Here we report that dogs looking at moving video images of conspecifics exhibiting prevalent left- or right-asymmetric tail wagging showed higher cardiac activity and higher scores of anxious behavior when observing left- rather than right-biased tail wagging. The finding that dogs are sensitive to the asymmetric tail expressions of other dogs supports the hypothesis of a link between brain asymmetry and social behavior and may prove useful to canine animal welfare theory and practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5734  
Permanent link to this record
 

 
Author Clara, E.; Regolin, L.; Vallortigara, G.; Rogers, L. doi  openurl
  Title Perception of the stereokinetic illusion by the common marmoset (Callithrix jacchus) Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 135-140  
  Keywords Animals; Behavior, Animal/*physiology; Callithrix/*physiology; Female; Male; *Optical Illusions; Pattern Recognition, Visual/*physiology  
  Abstract (down) Stereokinetic illusions have never been investigated in non-human primates, nor in other mammalian species. These illusions consist in the perception of a 3D solid object when certain 2D stimuli are rotated slowly in the plane perpendicular to the line of sight. The ability to perceive the stereokinetic illusion was investigated in the common marmoset (Callithrix jacchus). Four adult marmosets were trained to discriminate between a solid cylinder and a solid cone for food reward. Once learning criterion was reached, the marmosets were tested in sets of eight probe trials in which the two solid objects used at training were replaced by two rotating 2D stimuli. Only one of these stimuli produced, at least to the human observer, the stereokinetic illusion corresponding to the solid object previously reinforced. At test, the general behaviour and the total time spent by the marmosets observing each stimulus were recorded. The subjects stayed longer near the stimulus producing the stereokinetic illusion corresponding to the solid object reinforced at training than they did near the illusion corresponding to the previously non-rewarded stimulus. Hence, the common marmosets behaved as if they could perceive stereokinetic illusions.  
  Address Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, NSW, 2351, Australia. elena.clara@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16924457 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2445  
Permanent link to this record
 

 
Author Vallortigara, G.; Andrew, R.J. url  doi
openurl 
  Title Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
  Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.  
  Volume 33 Issue 1-2 Pages 41-57  
  Keywords Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick  
  Abstract (down) Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5341  
Permanent link to this record
 

 
Author Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. url  doi
openurl 
  Title Intraspecific competition and coordination in the evolution of lateralization Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 861-866  
  Keywords  
  Abstract (down) Recent studies have revealed a variety of left–right asymmetries among vertebrates and invertebrates. In many species, left- and right-lateralized individuals coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued that brain lateralization increases individual efficiency (e.g. avoiding unnecessary duplication of neural circuitry and reducing interference between functions), thus counteracting the ecological disadvantages of lateral biases in behaviour (making individual behaviour more predictable to other organisms). However, individual efficiency does not require a definite proportion of left- and right-lateralized individuals. Thus, such arguments do not explain population-level lateralization. We have previously shown that, in the context of prey–predator interactions, population-level lateralization can arise as an evolutionarily stable strategy when individually asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Here, we extend our model showing that populations consisting of left- and right-lateralized individuals in unequal numbers can be evolutionarily stable, based solely on strategic factors arising from the balance between antagonistic (competitive) and synergistic (cooperative) interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5346  
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
  Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract (down) Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Quaranta, A.; Siniscalchi, M.; Frate, A.; Vallortigara, G. url  doi
openurl 
  Title Paw preference in dogs: relations between lateralised behaviour and immunity Type Journal Article
  Year 2004 Publication Behavioural Brain Research Abbreviated Journal  
  Volume 153 Issue 2 Pages 521-525  
  Keywords Paw preference; Lateralisation; Immunity; Dog  
  Abstract (down) Paw use in a task consisting of the removal of a piece of adhesive paper from the snout was investigated in 80 mongrel and pure-bred domestic dogs (Canis familiaris). Population lateralisation was observed, but in opposite directions in the two sexes (animals were not desexed): males preferentially used their left paw, females their right paw. The relationship between immune function and paw preference was then investigated. Some immune parameters (total number of white blood cells including lymphocytes, granulocytes and monocytes; leukocyte formula; total proteins; γ-globulins) were investigated in a sample of left-pawed (n=6), right-pawed (n=6) and ambidextrous (n=6) dogs. The results showed that the percentage of lymphocytes was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas granulocytes percentage was lower in left-pawed than in right-pawed and ambidextrous dogs. Moreover, total number of lymphocytes cells was higher in left-pawed than in right-pawed and ambidextrous dogs, whereas the number of γ-globulins was lower in left-pawed than in right-pawed and ambidextrous dogs. These findings represent the first evidence that brain asymmetry modulates immune responses in dogs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-4328 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5783  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print