toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shettleworth, S.J. url  isbn
openurl 
  Title Cognition, Evolution and Behaviour Type Book Whole
  Year 1998 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Description

How do animals perceive the world, learn, remember, search for food or mates, and find their way around? Do any non-human animals count, imitate one another, use a language, or think as we do? What use is cognition in nature and how might it have evolved? Historically, research on such questions has been fragmented between psychology, where the emphasis has been on theoretical models and lab experiments, and biology, where studies focus on evolution and the adaptive use of perception, learning, and decision-making in the field.

Cognition, Evolution and the Study of Behavior integrates research from psychology, behavioral ecology, and ethology in a wide-ranging synthesis of theory and research about animal cognition in the broadest sense, from species-specific adaptations in fish to cognitive mapping in rats and honeybees to theories of mind for chimpanzees. As a major contribution to the emerging discipline of comparative cognition, the book is an invaluable resource for all students and researchers in psychology, zoology, behavioral neuroscience. It will also interest general readers curious about the details of how and why animals--including humans--process, retain, and use information as they do.

Reviews

“This book is a very comprehensive review of animal cognition. It differs from other texts on this topic in a number of ways, as outlined by Shettleworth in her preface and in the opening chapter. Essentially, Shettleworth wants to advocate an 'adaptationist or ecological approach to cognition'. In doing so, she brings together a wealth of data on animal cognition, studied from quite different theoretical viewpoints, such as cognitive ethology, animal learning theory, neuroscience, behavioural ecology and cognitive psychology. . . . Each chapter ends with a clear and useful summary, and helpful suggestions for further reading. The book's numerous illustrations, which are mostly tables or figures redrawn by Margaret Nelson, greatly add to its appeal. . . . [T]his is a marvellously rich, well-written and stimulating book. . . . I greatly enjoyed reading [and] recommend it highly to anyone interested in animal cognition, evolution and behaviour.”--Animal Behaviour

“Sara Shettleworth has probably written the most comprehensive study of the animal mind ever and therefore a fundamental textbook on 'comparative cognition'. She first gets consciousness out of the way: whether an animal is conscious or not is impossible to determine, since consciousness is a private, subjective phenomenon. We can study cognition, and certainly cognition lends credibility to the idea that at least some animals must be at least to some degree conscious, but experiments can only prove facts about cognition. She reviews the field of cognitive ethology from the beginning and then analyzes the main cognitive tasks from an information-processing perspective By the end of her review of cognitive faculties, it become apparent that, at least among vertebrates, there are no significant differences in learning, except for language. All vertebrates are capable of 'associative' learning What no other vertebrate seems to be capable of is 'syntax'.” -- Piero Scaruffi, Thymos.com
 
  Address  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Oxford Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780195110487 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 4712  
Permanent link to this record
 

 
Author Shettleworth, S.J. url  doi
openurl 
  Title The evolution of comparative cognition: is the snark still a Boojum? Type Journal Article
  Year 2009 Publication Behav Processes Abbreviated Journal  
  Volume 80 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Shettleworth2009 Serial 6231  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Animal behaviour: planning for breakfast Type Journal Article
  Year 2007 Publication Nature Abbreviated Journal Nature  
  Volume 445 Issue 7130 Pages 825-826  
  Keywords Animals; Feeding Behavior/*physiology; *Food; Haplorhini/physiology; Memory/physiology; Songbirds/*physiology; Thinking/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17314961 Approved no  
  Call Number (up) refbase @ user @ Serial 356  
Permanent link to this record
 

 
Author Skov-Rackette, S.I.; Miller, N.Y.; Shettleworth, S.J. doi  openurl
  Title What-where-when memory in pigeons Type Journal Article
  Year 2006 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 4 Pages 345-358  
  Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning, Operant/physiology; Memory/*physiology; Reinforcement (Psychology); Space Perception/*physiology; Spatial Behavior/physiology; Teaching; Visual Perception/physiology  
  Abstract The authors report a novel approach to testing episodic-like memory for single events. Pigeons were trained in separate sessions to match the identity of a sample on a touch screen, to match its location, and to report on the length of the retention interval. When these 3 tasks were mixed randomly within sessions, birds were more than 80% correct on each task. However, performance on 2 different tests in succession after each sample was not consistent with an integrated memory for sample location, time, and identity. Experiment 2 tested binding of location and identity memories in 2 different ways. The results were again consistent with independent feature memories. Implications for tests of episodic-like memory are discussed.  
  Address Department of Psychology, University of Toronto, Toronto, ON, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17044738 Approved no  
  Call Number (up) refbase @ user @ Serial 357  
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J. doi  openurl
  Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
  Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 67 Issue 3 Pages 165-176  
  Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology  
  Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.  
  Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16415571 Approved no  
  Call Number (up) refbase @ user @ Serial 358  
Permanent link to this record
 

 
Author Gibson, B.M.; Juricevic, I.; Shettleworth, S.J.; Pratt, J.; Klein, R.M. openurl 
  Title Looking for inhibition of return in pigeons Type Journal Article
  Year 2005 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav  
  Volume 33 Issue 3 Pages 296-308  
  Keywords Animals; Behavior, Animal/*physiology; Columbidae; *Inhibition (Psychology); Reinforcement (Psychology)  
  Abstract We conducted four experiments in order to investigate whether pigeons' responses to a recently attended (i.e., recently pecked) location are inhibited. In Experiments 1 and 2, stimulus displays were similar to those used in studies of inhibition of return (IOR) with humans; responses to cued targets tended to be facilitated rather than inhibited. In Experiments 3 and 4, birds were presented with stimulus displays that mimicked clusters of small grains and were relatively localized, which should have been more appropriate for detecting IOR in pigeons. The results from these experiments again provided evidence for facilitation of responding to cued targets, rather than for IOR.  
  Address University of Toronto, Toronto, Ontario, Canada. bgibson@cisunix.unh.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-4494 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16396077 Approved no  
  Call Number (up) refbase @ user @ Serial 359  
Permanent link to this record
 

 
Author Sutton, J.E.; Shettleworth, S.J. doi  openurl
  Title Internal sense of direction and landmark use in pigeons (Columba livia) Type Journal Article
  Year 2005 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol  
  Volume 119 Issue 3 Pages 273-284  
  Keywords Animals; *Columbidae; Conflict (Psychology); *Cues; Discrimination Learning; Homing Behavior; *Intuition; *Orientation; *Space Perception; Transfer (Psychology); *Visual Perception  
  Abstract The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable.  
  Address Department of Psychology, University of Toronto, ON, Canada. jsutton7@uwo.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16131256 Approved no  
  Call Number (up) refbase @ user @ Serial 360  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Taking the best for learning Type Journal Article
  Year 2005 Publication Behavioural processes Abbreviated Journal Behav. Process.  
  Volume 69 Issue 2 Pages 147-9; author reply 159-63  
  Keywords *Algorithms; Animals; *Behavior, Animal; Decision Making; Evolution; *Learning; *Models, Theoretical  
  Abstract Examples of how animals learn when multiple, sometimes redundant, cues are present provide further examples not considered by Hutchinson and Gigerenzer that seem to fit the principle of taking the best. “The best” may the most valid cue in the present circumstances; evolution may also produce species-specific biases to use the most functionally relevant cues.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., Canada M5S 3G3. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15845301 Approved no  
  Call Number (up) refbase @ user @ Serial 361  
Permanent link to this record
 

 
Author Gibson, B.M.; Shettleworth, S.J. doi  openurl
  Title Place versus response learning revisited: tests of blocking on the radial maze Type Journal Article
  Year 2005 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 119 Issue 2 Pages 567-586  
  Keywords Animals; *Association Learning; Male; *Maze Learning; Memory; Rats; Rats, Long-Evans; Reproducibility of Results  
  Abstract Neurobiological and behavioral research indicates that place learning and response learning occur simultaneously, in parallel. Such findings seem to conflict with theories of associative learning in which different cues compete for learning. The authors conducted place+response training on a radial maze and then tested place learning and response learning separately by reconfiguring the maze in various ways. Consistent with the effects of manipulating place and response systems in the brain (M. G. Packard & J. L. McGaugh, 1996), well-trained rats showed strong place learning and strong response learning. Three experiments using associative blocking paradigms indicated that prior response learning interferes with place learning. Blocking and related tests can be used to better understand how memory systems interact during learning.  
  Address Department of Psychology, University of New Hampshire, Durham, NH 03824-3567, USA. bgibson@cisunix.unh.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15839803 Approved no  
  Call Number (up) refbase @ user @ Serial 362  
Permanent link to this record
 

 
Author Skov-Rackette, S.I.; Shettleworth, S.J. doi  openurl
  Title What do rats learn about the geometry of object arrays? Tests with exploratory behavior Type Journal Article
  Year 2005 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 31 Issue 2 Pages 142-154  
  Keywords Animals; Behavior, Animal; *Discrimination Learning; *Exploratory Behavior; Female; *Form Perception; Habituation, Psychophysiologic; Male; Rats; Rats, Long-Evans  
  Abstract Six experiments using habituation of exploratory behavior tested whether disoriented rats foraging in a large arena encode the shapes of arrays of objects. Rats did not respond to changes in position of a single object, but they responded to a change in object color and to a change in position of 1 object in a square array, as in previous research (e.g., C. Thinus-Blanc et al., 1987). Rats also responded to an expansion of a square array, suggesting that they encoded sets of interobject distances rather than overall shape. In Experiments 4-6, rats did not respond to changes in sense of a triangular array that maintained interobject distances and angles. Shapes of object arrays are encoded differently from shapes of enclosures.  
  Address Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada. shannon.skov.rackette@utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15839772 Approved no  
  Call Number (up) refbase @ user @ Serial 363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print