toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Touma, C.; Sachser, N.; Mostl, E.; Palme, R. openurl 
  Title Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice Type Journal Article
  Year 2003 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume 130 Issue 3 Pages 267-278  
  Keywords Animals; Chromatography, High Pressure Liquid; Circadian Rhythm/*physiology; Corticosterone/*metabolism/urine; Feces/*chemistry; Female; Immunoenzyme Techniques; Kinetics; Male; Mice; Mice, Inbred C57BL; Reference Values; Sex Factors; Stress/metabolism; Time Factors; Tritium  
  Abstract Non-invasive techniques to monitor stress hormones in small animals like mice offer several advantages and are highly demanded in laboratory as well as in field research. Since knowledge about the species-specific metabolism and excretion of glucocorticoids is essential to develop such a technique, we conducted radiometabolism studies in mice (Mus musculus f. domesticus, strain C57BL/6J). Each mouse was injected intraperitoneally with 740 kBq of 3H-labelled corticosterone and all voided urine and fecal samples were collected for five days. In a first experiment 16 animals (eight of each sex) received the injection at 9 a.m., while eight mice (four of each sex) were injected at 9 p.m. in a second experiment. In both experiments radioactive metabolites were recovered predominantly in the feces, although males excreted significantly higher proportions via the feces (about 73%) than females (about 53%). Peak radioactivity in the urine was detected within about 2h after injection, while in the feces peak concentrations were observed later (depending on the time of injection: about 10h postinjection in experiment 1 and about 4h postinjection in experiment 2, thus proving an effect of the time of day). The number and relative abundance of fecal [3H]corticosterone metabolites was determined by high performance liquid chromatography (HPLC). The HPLC separations revealed that corticosterone was extensively metabolized mainly to more polar substances. Regarding the types of metabolites formed, significant differences were found between males and females, but not between the experiments. Additionally, the immunoreactivity of these metabolites was assessed by screening the HPLC fractions with four enzyme immunoassays (EIA). However, only a newly established EIA for 5alpha-pregnane-3beta,11beta,21-triol-20-one (measuring corticosterone metabolites with a 5alpha-3beta,11beta-diol structure) detected several peaks of radioactive metabolites with high intensity in both sexes, while the other EIAs showed only minor immunoreactivity. Thus, our study for the first time provides substantial information about metabolism and excretion of corticosterone in urine and feces of mice and is the first demonstrating a significant impact of the animals' sex and the time of day. Based on these data it should be possible to monitor adrenocortical activity non-invasively in this species by measuring fecal corticosterone metabolites with the newly developed EIA. Since mice are extensively used in research world-wide, this could open new perspectives in various fields from ecology to behavioral endocrinology.  
  Address Department of Behavioral Biology, Institute of Neuro and Behavioral Biology, University of Muenster, Badestrasse 9, D-48149 Muenster, Germany. touma@uni-muenster.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12606269 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4086  
Permanent link to this record
 

 
Author Touma, C.; Palme, R.; Sachser, N. openurl 
  Title Analyzing corticosterone metabolites in fecal samples of mice: a noninvasive technique to monitor stress hormones Type Journal Article
  Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 45 Issue 1 Pages 10-22  
  Keywords Adrenal Cortex/drug effects; Adrenal Cortex Function Tests; Adrenocorticotropic Hormone/pharmacology; Analysis of Variance; Animals; Circadian Rhythm; Corticosterone/*analysis/metabolism; Dexamethasone/pharmacology; Feces/*chemistry; Female; Immunoenzyme Techniques/*methods; Male; Mice; Mice, Inbred C57BL; Models, Animal; Reproducibility of Results; Stress, Psychological/*metabolism  
  Abstract In small animals like mice, the monitoring of endocrine functions over time is constrained seriously by the adverse effects of blood sampling. Therefore, noninvasive techniques to monitor, for example, stress hormones in these animals are highly demanded in laboratory as well as in field research. The aim of our study was to evaluate the biological relevance of a recently developed technique to monitor stress hormone metabolites in fecal samples of laboratory mice. In total, six experiments were performed using six male and six female mice each. Two adrenocorticotropic hormone (ACTH) challenge tests, two dexamethasone (Dex) suppression tests and two control experiments [investigating effects of the injection procedure itself and the diurnal variation (DV) of glucocorticoids (GCs), respectively] were conducted. The experiments clearly demonstrated that pharmacological stimulation and suppression of adrenocortical activity was reflected accurately by means of corticosterone metabolite (CM) measurements in the feces of males and females. Furthermore, the technique proved sensitive enough to detect dosage-dependent effects of the ACTH/Dex treatment and facilitated to reveal profound effects of the injection procedure itself. Even the naturally occurring DV of GCs could be monitored reliably. Thus, our results confirm that measurement of fecal CM with the recently established 5alpha-pregnane-3beta,11beta,21-triol-20-one enzyme immunoassay is a very powerful tool to monitor adrenocortical activity in laboratory mice. Since mice represent the vast majority of all rodents used for research worldwide and the number of transgenic and knockout mice utilized as animal models is still increasing, this noninvasive technique can open new perspectives in biomedical and behavioral science.  
  Address Department of Behavioural Biology, University of Muenster, D-48149 Muenster, Germany. touma@uni-muenster.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14733887 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4084  
Permanent link to this record
 

 
Author Ramos, D.; Reche-Junior, A.; Fragoso, P.L.; Palme, R.; Yanasse, N.K.; Gouvêa, V.R.; Beck, A.; Mills, D.S. url  doi
openurl 
  Title Are cats (Felis catus) from multi-cat households more stressed? Evidence from assessment of fecal glucocorticoid metabolite analysis Type Journal Article
  Year 2013 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.  
  Volume 122 Issue Pages 72-75  
  Keywords Feline; Housing; Non-invasive; Enzyme immunoassay; Cortisol  
  Abstract Abstract Given the social and territorial features described in feral cats, it is commonly assumed that life in multi-cat households is stressful for domestic cats and suggested that cats kept as single pets are likely to have better welfare. On the other hand, it has been hypothesized that under high densities cats can organize themselves socially thus preventing stress when spatial dispersion is unavailable. This study was aimed at comparing the general arousal underpinning emotional distress in single housed cats and in cats from multi-cat households (2 and 3–4 cats) on the basis of fecal glucocorticoid metabolites (GCM) measured via enzyme immunoassay (EIA). GCM did not significantly vary as a function of living style (single, double or group-housing); highly stressed individuals were equally likely in the three groups. Young cats in multi-cat households had lower GCM, and overall cats that tolerate (as opposed to dislike) petting by the owners tended to have higher GCM levels. Other environmental aspects within cat houses (e.g. relationship with humans, resource availability) may play a more important role in day to day feline arousal levels than the number of cats per se.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5997  
Permanent link to this record
 

 
Author Palme, R. url  doi
openurl 
  Title Non-invasive measurement of glucocorticoids: Advances and problems Type Journal Article
  Year 2019 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.  
  Volume 199 Issue Pages 229-243  
  Keywords Glucocorticoids; Non-invasive; Faecal cortisol/corticosterone metabolites; Immunoassays; Physiological/biological validation  
  Abstract Glucocorticoids (GCs; i.e. cortisol/corticosterone) are a central component of the stress response and thus their measurement is frequently used to evaluate the impact of stressful situations. Their metabolites from faeces of various animal species are more and more taken as a non-invasive aid to assess GC release and thus adrenocortical activity. The current literature review includes an extensive collection (1327 papers) and evaluation (see also Supplementary Tables) of the literature on faecal cortisol/corticosterone metabolite (FCM) analysis published to date. It aims at giving reference for researchers interested in implementing FCM analysis into their study or seeking to improve such methods by providing background knowledge on GC metabolism and excretion, conveying insights into methodological issues and stating caveats of FCM analysis and by highlighting prerequisites for and some examples of a successful application of such methods. Collecting faecal samples and analysing FCMs may appear simple and straightforward, but researchers have to select and apply methods correctly. They also need to be aware of the many pitfalls and potentially confounding factors and, last but not least, have to carefully interpret results. Applied properly, measurement of FCMs is a powerful non-invasive tool in a variety of research areas, such as (stress) biology, ethology, ecology, animal conservation and welfare, but also biomedicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-9384 ISBN Medium  
  Area Expedition Conference  
  Notes Palme2019_attachment.pdf Approved no  
  Call Number Equine Behaviour @ team @ Serial 6517  
Permanent link to this record
 

 
Author Touma, C.; Palme, R. doi  openurl
  Title Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 54-74  
  Keywords Animals; Birds/*metabolism; Circadian Rhythm; Feces/*chemistry; Glucocorticoids/*analysis; Mammals/*metabolism; Reproducibility of Results; Seasons; Sex Factors  
  Abstract In recent years, the noninvasive monitoring of steroid hormone metabolites in feces of mammals and droppings of birds has become an increasingly popular technique. It offers several advantages and has been applied to a variety of species under various settings. However, using this technique to reliably assess an animal's adrenocortical activity is not that simple and straightforward to apply. Because clear differences regarding the metabolism and excretion of glucocorticoid metabolites (GCMs) exist, a careful validation for each species and sex investigated is obligatory. In this review, general analytical issues regarding sample storage, extraction procedures, and immunoassays are briefly discussed, but the main focus lies on experiments and recommendations addressing the validation of fecal GCM measurements in mammals and birds. The crucial importance of scrutinizing the physiological and biological validity of fecal GCM analyses in a given species is stressed. In particular, the relevance of the technique to detect biologically meaningful alterations in adrenocortical activity must be shown. Furthermore, significant effects of the animals' sex, the time of day, season, and different life history stages are discussed, bringing about the necessity to seriously consider possible sex differences as well as diurnal and seasonal variations. Thus, comprehensive information on the animals' biology and stress physiology should be carefully taken into account. Together with an extensive physiological and biological validation, this will ensure that the measurement of fecal GCMs can be used as a powerful tool to assess adrenocortical activity in diverse investigations on laboratory, companion, farm, zoo, and wild animals.  
  Address Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Kraepelinstrasse 2-10, D-80804 Munich, Germany. touma@mpipsykl.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055843 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4073  
Permanent link to this record
 

 
Author Thiel, D.; Jenni-Eiermann, S.; Palme, R. doi  openurl
  Title Measuring corticosterone metabolites in droppings of capercaillies (Tetrao urogallus) Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 96-108  
  Keywords Adrenocorticotropic Hormone/administration & dosage/analysis/metabolism; Animals; Circadian Rhythm; Corticosterone/administration & dosage/*analysis/*metabolism; Feces/*chemistry; Female; Freezing; Galliformes/*metabolism; Male; Reproducibility of Results; Sex Factors; Temperature; Time Factors; Tritium/diagnostic use  
  Abstract The capercaillie (Tetrao urogallus), the largest grouse species in the world, is decreasing in numbers in major parts of its distribution range. Disturbances by human outdoor activities are discussed as a possible reason for this population decline. An indicator for disturbances is the increase of the glucocorticoid corticosterone, a stress hormone, which helps to cope with life-threatening situations. However, repeated disturbances might result in a long-term increase of the basal corticosterone concentration, which can result in detrimental effects like reduced fitness and survival of an animal. To measure corticosterone metabolites (CMs) noninvasively in the droppings of free-living capercaillies, first an enzyme immunoassay (EIA) in captive birds had to be selected and validated. Therefore, the excretion pattern of intravenously injected radiolabeled corticosterone was determined and 3H metabolites were characterized. High-performance liquid chromatography (HPLC) separations of the samples containing peak concentrations revealed that corticosterone was extensively metabolized. The HPLC fractions were tested in several EIAs for glucocorticoid metabolites. The physiological relevance of this method was proved after pharmacological stimulation of the adrenocortical activity. Only the recently established cortisone assay, measuring CMs with a 3,11-dione structure, detected an expressed increase of concentrations following ACTH stimulation. To set up a sampling protocol suited for the field, we examined the influence of various storage conditions and time of day on concentrations of CMs.  
  Address Swiss Ornithological Institute, 6204 Sempach, Switzerland. dominik.thiel@vogelwarte.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055846 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4079  
Permanent link to this record
 

 
Author Baltic, M.; Jenni-Eiermann, S.; Arlettaz, R.; Palme, R. doi  openurl
  Title A noninvasive technique to evaluate human-generated stress in the black grouse Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 81-95  
  Keywords Adrenocorticotropic Hormone/metabolism; Animals; Bird Diseases/*metabolism; Conservation of Natural Resources; Corticosterone/*metabolism; Ecosystem; Feces/*chemistry; Female; Galliformes/*metabolism; Immunoenzyme Techniques/methods/veterinary; Male; Reproducibility of Results; Stress/metabolism/*veterinary; Tritium/diagnostic use  
  Abstract The continuous development of tourism and related leisure activities is exerting an increasingly intense pressure on wildlife. In this study, a novel noninvasive method for measuring stress in the black grouse, an endangered, emblematic species of European ecosystems that is currently declining in several parts of its European range, is tested and physiologically validated. A radiometabolism study and an ACTH challenge test were performed on four captive black grouse (two of each sex) in order to get basic information about the metabolism and excretion of corticosterone and to find an appropriate enzyme-immunoassay (EIA) to measure its metabolites in the feces. Peak radioactivity in the droppings was detected within 1 to 2 hours. Injected (3)H-corticosterone was excreted as polar metabolites and by itself was almost absent. A cortisone-EIA was chosen from among seven tested EIAs for different groups of glucocorticoid metabolites, because it cross-reacted with some of the formed metabolites and best reflected the increase of excreted corticosterone metabolites, after the ACTH challenge test. Concentrations of the metabolites from fecal samples collected from snow burrows of free-ranging black grouse were within the same range as in captive birds. The noninvasive method described may be appropriate for evaluating the stress faced by free-living black grouse populations in the wild, particularly in mountain ecosystems where human disturbance, especially by winter sports, is of increasing conservation concern.  
  Address Zoological Institute, Division of Conservation Biology, Baltzerstrasse 6, CH-3012 Bern, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055845 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4080  
Permanent link to this record
 

 
Author Palme, R. doi  openurl
  Title Measuring fecal steroids: guidelines for practical application Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 75-80  
  Keywords Animals; Feces/*chemistry; Immunoassay/methods; Reproducibility of Results; Specimen Handling/methods; Steroids/*analysis  
  Abstract During the past 20 years, measuring steroid hormone metabolites in fecal samples has become a widely appreciated technique, because it has proved to be a powerful, noninvasive tool that provides important information about an animal's endocrine status (adrenocortical activity and reproductive status). However, although sampling is relatively easy to perform and free of feedback, a careful consideration of various factors is necessary to achieve proper results that lead to sound conclusions. This article aims to provide guidelines for an adequate application of these techniques. It is meant as a checklist that addresses the main topics of concern, such as sample collection and storage, time delay extraction procedures, assay selection and validation, biological relevance, and some confounding factors. These issues are discussed briefly here and in more detail in other recent articles.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria. Rupert.Palme@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055844 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4081  
Permanent link to this record
 

 
Author Mostl, E.; Rettenbacher, S.; Palme, R. doi  openurl
  Title Measurement of corticosterone metabolites in birds' droppings: an analytical approach Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 17-34  
  Keywords Animals; Birds/*metabolism; Corticosterone/*analysis/metabolism; Feces/*chemistry; Gas Chromatography-Mass Spectrometry; Immunoassay; Molecular Structure; Reproducibility of Results; Sensitivity and Specificity  
  Abstract Fecal steroid analyses are becoming increasingly popular among both field and laboratory scientists. The benefits associated with sampling procedures that do not require restraint, anesthesia, and blood collection include less risk to subject and investigator, as well as the potential to obtain endocrine profiles that are not influenced by the sampling procedure itself. In the feces, a species-specific pattern of metabolites is present, because glucocorticoids are extensively metabolized. Therefore, selection of adequate extraction procedures and immunoassays for measuring the relevant metabolites is a serious issue. In this review, emphasis is placed on the establishment and analytical validation of methods to measure glucocorticoid metabolites for a noninvasive evaluation of adrenocortical activity in droppings of birds.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Vienna, Veterinarplatz 1, A-1210 Vienna, Austria. erich.moestl@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16055841 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4082  
Permanent link to this record
 

 
Author Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Mostl, E. doi  openurl
  Title Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1040 Issue Pages 162-171  
  Keywords Adrenal Glands/chemistry/metabolism; Animals; Birds; Catecholamines/analysis/chemistry/*metabolism; Feces/*chemistry; Glucocorticoids/analysis/chemistry/*metabolism; Hormones/analysis/metabolism; Mammals; Species Specificity; Stress/*metabolism  
  Abstract A multitude of endocrine mechanisms are involved in coping with challenges. Front-line hormones to overcome stressful situations are glucocorticoids (GCs) and catecholamines (CAs). These hormones are usually determined in plasma samples as parameters of adrenal activity and thus of disturbance. GCs (and CAs) are extensively metabolized and excreted afterwards. Therefore, the concentration of GCs (or their metabolites) can be measured in various body fluids or excreta. Above all, fecal samples offer the advantages of easy collection and a feedback-free sampling procedure. However, large differences exist among species regarding the route and time course of excretion, as well as the types of metabolites formed. Based on information gained from radiometabolism studies (reviewed in this paper), we recently developed and successfully validated different enzyme immunoassays that enable the noninvasive measurement of groups of cortisol or corticosterone metabolites in animal feces. The determination of these metabolites in fecal samples can be used as a powerful tool to monitor GC production in various species of domestic, wildlife, and laboratory animals.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Vienna, Austria. rupert.palme@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15891021 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4083  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print