toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gray, E.R.; Spetch, M.L. url  openurl
  Title Pigeons Encode Absolute Distance but Relational Direction From Landmarks and Walls Type Journal Article
  Year (up) 2006 Publication Journal of Experimental Psychology: Animal Behavior Processes Abbreviated Journal  
  Volume 32 Issue 4 Pages 474-480  
  Keywords spatial cognition; absolute distance; relational direction; landmark configurations  
  Abstract In recent studies, researchers have examined animals' use of absolute or relational distances in finding a hidden goal. When trained with an array of landmarks, most animals use the default strategy of searching at an absolute distance from 1 or more landmarks. In contrast, when trained in enclosures, animals often use the relationship among walls. In the present study, pigeons were trained to find the center of an array of landmarks or a set of short walls that did not block external cues. Expansion tests showed that both groups of pigeons primarily used an absolute distance strategy. However, on rotational tests, pigeons continued to search in the center of the array, suggesting that direction was learned in relation to array.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2894  
Permanent link to this record
 

 
Author Kaminski, J.; Call, J.; Tomasello, M. doi  openurl
  Title Goats' behaviour in a competitive food paradigm: Evidence for perspective taking? Type Journal Article
  Year (up) 2006 Publication Behaviour Abbreviated Journal Behaviour  
  Volume 143 Issue Pages 1341-1356  
  Keywords SOCIAL COGNITION; GOATS; VISUAL PERSPECTIVE TAKING; COMPARATIVE COGNITION  
  Abstract Many mammalian species are highly social, creating intra-group competition for such things as food and mates. Recent research with nonhuman primates indicates that in competitive situations individuals know what other individuals can and cannot see, and they use this knowledge to their advantage in various ways. In the current study, we extended these findings to a non-primate species, the domestic goat, using the conspecific competition paradigm developed by Hare et al. (2000). Like chimpanzees and some other nonhuman primates, goats live in fission-fusion societies, form coalitions and alliances, and are known to reconcile after fights. In the current study, a dominant and a subordinate individual competed for food, but in some cases the subordinate could see things that the dominant could not. In the condition where dominants could only see one piece of food but subordinates could see both, subordinates' preferences depended on whether they received aggression from the dominant animal during the experiment. Subjects who received aggression preferred the hidden over the visible piece of food, whereas subjects who never received aggression significantly preferred the visible piece. By using this strategy, goats who had not received aggression got significantly more food than the other goats. Such complex social interactions may be supported by cognitive mechanisms similar to those of chimpanzees. We discuss these results in the context of current issues in mammalian cognition and socio-ecology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3430  
Permanent link to this record
 

 
Author Ikeda, M.; Patterson, K.; Graham, K.S.; Ralph, M.A.L.; Hodges, J.R. doi  openurl
  Title A horse of a different colour: do patients with semantic dementia recognise different versions of the same object as the same? Type Journal Article
  Year (up) 2006 Publication Neuropsychologia Abbreviated Journal Neuropsychologia  
  Volume 44 Issue 4 Pages 566-575  
  Keywords Adult; Aged; Anomia/diagnosis/psychology; Atrophy; *Attention; Color Perception; Dementia/*diagnosis/psychology; *Discrimination Learning; Dominance, Cerebral; Female; Humans; Male; *Memory, Short-Term; Middle Aged; Neuropsychological Tests; Orientation; *Pattern Recognition, Visual; Reference Values; Retention (Psychology); Semantics; Size Perception; Temporal Lobe/pathology  
  Abstract Ten patients with semantic dementia resulting from bilateral anterior temporal lobe atrophy, and 10 matched controls, were tested on an object recognition task in which they were invited to choose (from a four-item array) the picture representing “the same thing” as an object picture that they had just inspected and attempted to name. The target in the response array was never physically identical to the studied picture but differed from it – in the various conditions – in size, angle of view, colour or exemplar (e.g. a different breed of dog). In one test block for each patient, the response array was presented immediately after the studied picture was removed; in another block, a 2 min filled delay was inserted between study and test. The patients performed relatively well when the studied object and target response differed only in the size of the picture on the page, but were significantly impaired as a group in the other three type-of-change conditions, even with no delay between study and test. The five patients whose structural brain imaging revealed major right-temporal atrophy were more impaired overall, and also more affected by the 2 min delay, than the five patients with an asymmetric pattern characterised by predominant left-sided atrophy. These results are interpreted in terms of a hypothesis that successful classification of an object token as an object type is not a pre-semantic ability but rather results from interaction of perceptual and conceptual processing.  
  Address Department of Neuropsychiatry, Ehime University School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan. mikeda@m.ehime-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-3932 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16115656 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4059  
Permanent link to this record
 

 
Author Brennan, P.A.; Kendrick, K.M. doi  openurl
  Title Mammalian social odours: attraction and individual recognition Type Journal Article
  Year (up) 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2061-2078  
  Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal  
  Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4334  
Permanent link to this record
 

 
Author Drummond, H. doi  openurl
  Title Dominance in vertebrate broods and litters Type Journal Article
  Year (up) 2006 Publication Quarterly Review of Biology Abbreviated Journal  
  Volume 81 Issue 1 Pages 3-32  
  Keywords Aggression; Assessment; Dominance; Individual recognition; Sibling conflict; Trained losing  
  Abstract Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as “aggression-submission,” “aggression-resistance, ” “aggression-aggression,” “aggression-avoidance,” “rotating dominance,” and “flock dominance.” These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the “site-specific dominance” (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. Copyright © 2006 by The University of Chicago. All rights reserved.  
  Address Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, 04510 D.F., Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 20; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4559  
Permanent link to this record
 

 
Author Trillmich, F.; Rehling, A. url  doi
isbn  openurl
  Title Animal Communication: Parent-Offspring Type Book Chapter
  Year (up) 2006 Publication Encyclopedia of Language & Linguistics Abbreviated Journal  
  Volume Issue Pages 284-288  
  Keywords Begging Strategies; Communication; Competition; Feeding Strategies; Fitness; Parental Care; Parent-Offspring Conflict; Recognition; Sibling Conflict  
  Abstract Parent-offspring communication has evolved under strong selection to guarantee that the valuable resource of parental care is expended efficiently on raising offspring. To ensure allocation of parental care to their own offspring, individual recognition becomes established in higher vertebrates when the young become mobile at a time when a nest site can no longer provide a safe cue to recognition. Such recognition needs to be established by rapid, sometimes imprinting-like, processes in animals producing precocial offspring. In parents, offering strategies that stimulate feeding and entice offspring to approach the right site have evolved. Such parental signals can be olfactory, acoustic, or visual. In offspring, begging strategies involve shuffling for the best place to obtain food – be this the most productive teat or the best position in the nest. This involves signals that make the offspring particularly obvious to the parent. Parents often feed young according to their signaling intensity but may also show favoritism for weaker offspring. Offspring signals also serve to communicate the continuing presence of the young and may thereby maintain brood-care behavior in parents. Internal processes in parents may end parental care irrespective of further signaling by offspring, thus ensuring that offspring cannot manipulate parents into providing substantially more care than is optimal for their own fitness.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Oxford Editor Keith Brown  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9780080448541 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4642  
Permanent link to this record
 

 
Author Byrne, R.W.; Bates, L.A. url  doi
openurl 
  Title Why are animals cognitive? Type Journal Article
  Year (up) 2006 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 16 Issue 12 Pages R445-8  
  Keywords Animals; Arachnida/physiology; *Association Learning; *Behavior, Animal; *Cognition; Cooperative Behavior; Falconiformes/physiology; Pan troglodytes/physiology; Parrots/physiology; Passeriformes/physiology  
  Abstract  
  Address Centre for Social Learning and Cognitive Evolution, and Scottish Primate Research Group, School of Psychology, University of St Andrews, Fife KY16 9JP, Scotland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16781995 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4708  
Permanent link to this record
 

 
Author Lim, M.M.; Young, L.J. url  doi
openurl 
  Title Neuropeptidergic regulation of affiliative behavior and social bonding in animals Type Journal Article
  Year (up) 2006 Publication Hormones and Behavior Abbreviated Journal Hormon. Behav.  
  Volume 50 Issue 4 Pages 506-517  
  Keywords Vasopressin receptor; Oxytocin receptor; Social recognition; Social behavior; Pair bond; Autism; Neuropeptides  
  Abstract Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6416  
Permanent link to this record
 

 
Author Agrillo, C.; Dadda, M.; Bisazza, A. doi  openurl
  Title Quantity discrimination in female mosquitofish Type Journal Article
  Year (up) 2007 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 63-70  
  Keywords Animals; Cognition; *Cyprinodontiformes; *Discrimination Learning; Female; Male; Mathematics; *Pattern Recognition, Visual  
  Abstract The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.  
  Address Department of General Psychology, University of Padova, via Venezia 8, 35131, Padova, Italy. christian.agrillo@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16868736 Approved no  
  Call Number refbase @ user @ Serial 339  
Permanent link to this record
 

 
Author Grosenick, L.; Clement, T.S.; Fernald, R.D. doi  openurl
  Title Fish can infer social rank by observation alone Type Journal Article
  Year (up) 2007 Publication Nature Abbreviated Journal Nature  
  Volume 445 Issue 7126 Pages 429-432  
  Keywords Aggression/physiology; Animals; Cognition/*physiology; Female; Fishes/*physiology; Learning/*physiology; Male; Models, Biological; *Social Dominance; Territoriality  
  Abstract Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A > B and B > C to infer A > C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems. Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them. Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.  
  Address Department of Biological Sciences, Stanford University, Stanford, California, 94305, USA. logang@stanford.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17251980 Approved no  
  Call Number refbase @ user @ Serial 600  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print