toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skov-Rackette, S.I.; Miller, N.Y.; Shettleworth, S.J. doi  openurl
  Title What-where-when memory in pigeons Type Journal Article
  Year (down) 2006 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 4 Pages 345-358  
  Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning, Operant/physiology; Memory/*physiology; Reinforcement (Psychology); Space Perception/*physiology; Spatial Behavior/physiology; Teaching; Visual Perception/physiology  
  Abstract The authors report a novel approach to testing episodic-like memory for single events. Pigeons were trained in separate sessions to match the identity of a sample on a touch screen, to match its location, and to report on the length of the retention interval. When these 3 tasks were mixed randomly within sessions, birds were more than 80% correct on each task. However, performance on 2 different tests in succession after each sample was not consistent with an integrated memory for sample location, time, and identity. Experiment 2 tested binding of location and identity memories in 2 different ways. The results were again consistent with independent feature memories. Implications for tests of episodic-like memory are discussed.  
  Address Department of Psychology, University of Toronto, Toronto, ON, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17044738 Approved no  
  Call Number refbase @ user @ Serial 357  
Permanent link to this record
 

 
Author Beran, M.J.; Beran, M.M.; Harris, E.H.; Washburn, D.A. doi  openurl
  Title Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque Type Journal Article
  Year (down) 2005 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 31 Issue 3 Pages 351-362  
  Keywords Animals; Behavior, Animal; Chi-Square Distribution; Cognition; Color Perception/physiology; Female; *Food; Judgment/*physiology; Macaca mulatta; Male; Pan troglodytes; Serial Learning/*physiology; Size Perception  
  Abstract Two chimpanzees and a rhesus macaque rapidly learned the ordinal relations between 5 colors of containers (plastic eggs) when all containers of a given color contained a specific number of identical food items. All 3 animals also performed at high levels when comparing sets of containers with sets of visible food items. This indicates that the animals learned the approximate quantity of food items in containers of a given color. However, all animals failed in a summation task, in which a single container was compared with a set of 2 containers of a lesser individual quantity but a greater combined quantity. This difficulty was not overcome by sequential presentation of containers into opaque receptacles, but performance improved if the quantitative difference between sizes was very large.  
  Address Language Research Center, Georgia State University, Decatur, 30034, USA. mjberan@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16045389 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2766  
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
  Year (down) 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Lazareva, O.F.; Smirnova, A.A.; Bagozkaja, M.S.; Zorina, Z.A.; Rayevsky, V.V.; Wasserman, E.A. doi  openurl
  Title Transitive responding in hooded crows requires linearly ordered stimuli Type Journal Article
  Year (down) 2004 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav  
  Volume 82 Issue 1 Pages 1-19  
  Keywords Animals; *Association; Cognition/physiology; Crows; Discrimination (Psychology); *Discrimination Learning; Feedback; Reinforcement (Psychology); Visual Perception/physiology  
  Abstract Eight crows were taught to discriminate overlapping pairs of visual stimuli (A+ B-, B+ C-, C+ D-, and D+ E-). For 4 birds, the stimuli were colored cards with a circle of the same color on the reverse side whose diameter decreased from A to E (ordered feedback group). These circles were made available for comparison to potentially help the crows order the stimuli along a physical dimension. For the other 4 birds, the circles corresponding to the colored cards had the same diameter (constant feedback group). In later testing, a novel choice pair (BD) was presented. Reinforcement history involving stimuli B and D was controlled so that the reinforcement/nonreinforcement ratios for the latter would be greater than for the former. If, during the BD test, the crows chose between stimuli according to these reinforcement/nonreinforcement ratios, then they should prefer D; if they chose according to the diameter of the feedback stimuli, then they should prefer B. In the ordered feedback group, the crows strongly preferred B over D; in the constant feedback group, the crows' choice did not differ significantly from chance. These results, plus simulations using associative models, suggest that the orderability of the postchoice feedback stimuli is important for crows' transitive responding.  
  Address Institute of Higher Nervous Activity, Moscow State University. olga-lazareva@uiowa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15484868 Approved no  
  Call Number refbase @ user @ Serial 612  
Permanent link to this record
 

 
Author Parr, L.A. doi  openurl
  Title Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition Type Journal Article
  Year (down) 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 171-178  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/physiology; Cues; Discrimination Learning/*physiology; Facial Expression; Female; Male; Pan troglodytes/*psychology; Perceptual Masking/*physiology; Photic Stimulation; Recognition (Psychology)/*physiology; Visual Perception/physiology; *Vocalization, Animal  
  Abstract The ability of organisms to discriminate social signals, such as affective displays, using different sensory modalities is important for social communication. However, a major problem for understanding the evolution and integration of multimodal signals is determining how humans and animals attend to different sensory modalities, and these different modalities contribute to the perception and categorization of social signals. Using a matching-to-sample procedure, chimpanzees discriminated videos of conspecifics' facial expressions that contained only auditory or only visual cues by selecting one of two facial expression photographs that matched the expression category represented by the sample. Other videos were edited to contain incongruent sensory cues, i.e., visual features of one expression but auditory features of another. In these cases, subjects were free to select the expression that matched either the auditory or visual modality, whichever was more salient for that expression type. Results showed that chimpanzees were able to discriminate facial expressions using only auditory or visual cues, and when these modalities were mixed. However, in these latter trials, depending on the expression category, clear preferences for either the visual or auditory modality emerged. Pant-hoots and play faces were discriminated preferentially using the auditory modality, while screams were discriminated preferentially using the visual modality. Therefore, depending on the type of expressive display, the auditory and visual modalities were differentially salient in ways that appear consistent with the ethological importance of that display's social function.  
  Address Division of Psychobiology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, GA 30329, Atlanta, USA. parr@rmy.emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14997361 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2544  
Permanent link to this record
 

 
Author Pickens, C.L.; Holland, P.C. doi  openurl
  Title Conditioning and cognition Type Journal Article
  Year (down) 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev  
  Volume 28 Issue 7 Pages 651-661  
  Keywords Animals; Association Learning/physiology; Cognition/*physiology; Conditioning (Psychology)/*physiology; Discrimination Learning/physiology; Humans; Memory; Models, Psychological; Reinforcement (Psychology); Visual Perception/physiology  
  Abstract Animals' abilities to use internal representations of absent objects to guide adaptive behavior and acquire new information, and to represent multiple spatial, temporal, and object properties of complex events and event sequences, may underlie many aspects of human perception, memory, and symbolic thought. In this review, two classes of simple associative learning tasks that address these core cognitive capacities are discussed. The first set, including reinforcer revaluation and mediated learning procedures, address the power of Pavlovian conditioned stimuli to gain access, through learning, to representations of upcoming events. The second set of investigations concern the construction of complex stimulus representations, as illustrated in studies of contextual learning, the conjunction of explicit stimulus elements in configural learning procedures, and recent studies of episodic-like memory. The importance of identifying both cognitive process and brain system bases of performance in animal models is emphasized.  
  Address Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15555675 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2803  
Permanent link to this record
 

 
Author Brennan, P.A. doi  openurl
  Title The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
  Year (down) 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 46 Issue 3 Pages 231-240  
  Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology  
  Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325224 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4191  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
  Year (down) 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 62 Issue 2 Pages 108-116  
  Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity  
  Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.  
  Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12937349 Approved no  
  Call Number refbase @ user @ Serial 367  
Permanent link to this record
 

 
Author Iversen, I.H.; Matsuzawa, T. doi  openurl
  Title Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task Type Journal Article
  Year (down) 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 3 Pages 169-183  
  Keywords Animals; Female; Hand/physiology; Motion Perception/*physiology; Movement/physiology; Pan troglodytes/*physiology; Spatial Behavior/*physiology; *Task Performance and Analysis; User-Computer Interface; Visual Perception/physiology  
  Abstract The experiments investigated how two adult captive chimpanzees learned to navigate in an automated interception task. They had to capture a visual target that moved predictably on a touch monitor. The aim of the study was to determine the learning stages that led to an efficient strategy of intercepting the target. The chimpanzees had prior training in moving a finger on a touch monitor and were exposed to the interception task without any explicit training. With a finger the subject could move a small “ball” at any speed on the screen toward a visual target that moved at a fixed speed either back and forth in a linear path or around the edge of the screen in a rectangular pattern. Initial ball and target locations varied from trial to trial. The subjects received a small fruit reinforcement when they hit the target with the ball. The speed of target movement was increased across training stages up to 38 cm/s. Learning progressed from merely chasing the target to intercepting the target by moving the ball to a point on the screen that coincided with arrival of the target at that point. Performance improvement consisted of reduction in redundancy of the movement path and reduction in the time to target interception. Analysis of the finger's movement path showed that the subjects anticipated the target's movement even before it began to move. Thus, the subjects learned to use the target's initial resting location at trial onset as a predictive signal for where the target would later be when it began moving. During probe trials, where the target unpredictably remained stationary throughout the trial, the subjects first moved the ball in anticipation of expected target movement and then corrected the movement to steer the ball to the resting target. Anticipatory ball movement in probe trials with novel ball and target locations (tested for one subject) showed generalized interception beyond the trained ball and target locations. The experiments illustrate in a laboratory setting the development of a highly complex and adaptive motor performance that resembles navigational skills seen in natural settings where predators intercept the path of moving prey.  
  Address Department of Psychology, University of North Florida, Jacksonville, FL 32224, USA. iiversen@unf.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12761656 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2567  
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S. openurl 
  Title The mind through chick eyes: memory, cognition and anticipation Type Journal Article
  Year (down) 2003 Publication Zoological Science Abbreviated Journal Zoolog Sci  
  Volume 20 Issue 4 Pages 395-408  
  Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology  
  Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”  
  Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0003 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12719641 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print