toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Cochet, H.; Byrne, R.W. url  doi
openurl 
  Title Evolutionary origins of human handedness: evaluating contrasting hypotheses Type Journal Article
  Year 2013 Publication Abbreviated Journal Animal Cognition  
  Volume 16 Issue 4 Pages 531-542  
  Keywords Hand preference; Hemispheric specialization; Communicative gestures; Evolution of language; Nonhuman primates; Human children  
  Abstract Variation in methods and measures, resulting in past dispute over the existence of population handedness in nonhuman great apes, has impeded progress into the origins of human right-handedness and how it relates to the human hallmark of language. Pooling evidence from behavioral studies, neuroimaging and neuroanatomy, we evaluate data on manual and cerebral laterality in humans and other apes engaged in a range of manipulative tasks and in gestural communication. A simplistic human/animal partition is no longer tenable, and we review four (nonexclusive) possible drivers for the origin of population-level right-handedness: skilled manipulative activity, as in tool use; communicative gestures; organizational complexity of action, in particular hierarchical structure; and the role of intentionality in goal-directed action. Fully testing these hypotheses will require developmental and evolutionary evidence as well as modern neuroimaging data.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5691  
Permanent link to this record
 

 
Author Janson, C.; Byrne, R. url  doi
openurl 
  Title What wild primates know about resources: opening up the black box Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 3 Pages 357-367  
  Keywords Cognitive map – Primate – Foraging – Ecology – Psychology  
  Abstract Abstract  We present the theoretical and practical difficulties of inferring the cognitive processes involved in spatial movement decisions of primates and other animals based on studies of their foraging behavior in the wild. Because the possible cognitive processes involved in foraging are not known a priori for a given species, some observed spatial movements could be consistent with a large number of processes ranging from simple undirected search processes to strategic goal-oriented travel. Two basic approaches can help to reveal the cognitive processes: (1) experiments designed to test specific mechanisms; (2) comparison of observed movements with predicted ones based on models of hypothesized foraging modes (ideally, quantitative ones). We describe how these two approaches have been applied to evidence for spatial knowledge of resources in primates, and for various hypothesized goals of spatial decisions in primates, reviewing what is now established. We conclude with a synthesis emphasizing what kinds of spatial movement data on unmanipulated primate populations in the wild are most useful in deciphering goal-oriented processes from random processes. Basic to all of these is an estimate of the animals ability to detect resources during search. Given knowledge of the animals detection ability, there are several observable patterns of resource use incompatible with a pure search process. These patterns include increasing movement speed when approaching versus leaving a resource, increasingly directed movement toward more valuable resources, and directed travel to distant resources from many starting locations. Thus, it should be possible to assess and compare spatial cognition across a variety of primate species and thus trace its ecological and evolutionary correlates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ knut @ Serial 4214  
Permanent link to this record
 

 
Author Sawaguchi, T.; Kudo, H. url  doi
openurl 
  Title Neocortical development and social structure in primates Type Journal Article
  Year 1990 Publication Primates Abbreviated Journal Primates  
  Volume 31 Issue 2 Pages 283-289  
  Keywords Neocortex – Relative size – Allometry – Congeneric group – Social structure – Monogyny – Polygyny – Primates  
  Abstract Abstract  The relationships between the relative size of the neocortex and differences in social structures were examined in prosimians and anthropoids. The relative size of the neocortex (RSN) of a given congeneric group in each superfamily of primates was measured based on the allometric relationships between neocortical volume and brain weight for each superfamily, to control phylogenetic affinity and the effects of brain size. In prosimians, “troop-making†congeneric groups (N=3) revealed a significantly larger RSN than solitary groups (N=6), and there was a significant, positive correlation between RSN and troop size. In the case of anthropoids, polygynous/frugivorous groups (N=5) revealed a significantly larger RSN than monogynous/frugivorous groups (N=8). Furthermore, a significant, positive correlation between RSN and troop size was found for frugivorous congeneric groups of the Ceboidea. These results suggest that neocortical development is associated with differences in social structure among primates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4799  
Permanent link to this record
 

 
Author Meunier, H.; Leca, J.B.; Deneubourg, J.L.; Petit, O. doi  openurl
  Title Group movement decisions in capuchin monkeys: the utility of an experimental study and a mathematical model to explore the relationship between individual and collective behaviours Type Journal Article
  Year 2006 Publication Behaviour Abbreviated Journal Behaviour  
  Volume 143 Issue Pages 1511-1527  
  Keywords animal society – collective decision-making – primates – group movement – mathematical modeling  
  Abstract In primate groups, collective movements are typically described as processes dependent on leadership mechanisms. However, in some species, decision-making includes negotiations and distributed leadership. These facts suggest that simple underlying processes may explain certain decision mechanisms during collective movements. To study such processes, we have designed experiments on white-faced capuchin monkeys (Cebus capucinus) during which we provoked collective movements involving a binary choice. These experiments enabled us to analyse the spatial decisions of individuals in the group. We found that the underlying process includes anonymous mimetism, which means that each individual may influence all members of the group. To support this result, we created a mathematical model issued from our experimental data. A totally anonymous model does not fit perfectly with our experimental distribution. A more individualised model, which takes into account the specific behaviour of social peripheral individuals, revealed the validity of the mimetism hypothesis. Even though white-faced capuchins have complex cognitive abilities, a coexistence of anonymous and social mechanisms appears to influence their choice of direction during collective movements. The present approach may offer vital insights into the relationships between individual behaviours and their emergent collective acts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 2066  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Marino, L. doi  openurl
  Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
  Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 21-32  
  Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology  
  Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.  
  Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097858 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4158  
Permanent link to this record
 

 
Author Cheney, D.; Seyfarth, R.; Smuts, B. doi  openurl
  Title Social relationships and social cognition in nonhuman primates Type Journal Article
  Year 1986 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 234 Issue 4782 Pages 1361-1366  
  Keywords Animals; *Cognition; Female; Male; Pair Bond; Primates/*physiology; *Social Behavior; Social Dominance; Social Perception  
  Abstract Complex social relationships among nonhuman primates appear to contribute to individual reproductive success. Experiments with and behavioral observations of natural populations suggest that sophisticated cognitive mechanisms may underlie primate social relationships. Similar capacities are usually less apparent in the nonsocial realm, supporting the view that at least some aspects of primate intelligence evolved to solve the challenges of interacting with conspecifics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3538419 Approved no  
  Call Number refbase @ user @ Serial 349  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Barrett, L.; Henzi, P. doi  openurl
  Title The social nature of primate cognition Type Journal Article
  Year 2005 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 272 Issue 1575 Pages 1865-1875  
  Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/*physiology; *Evolution; Intelligence/*physiology; Primates/*physiology; *Social Behavior  
  Abstract The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  
  Address School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. louiseb@liv.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16191591 Approved no  
  Call Number Serial 2086  
Permanent link to this record
 

 
Author Reader, S.M.; Laland, K.N. doi  openurl
  Title Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
  Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 99 Issue 7 Pages 4436-4441  
  Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior  
  Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.  
  Address Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11891325 Approved no  
  Call Number Serial 2149  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print