toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kaminski, J.; Call, J.; Tomasello, M. doi  openurl
  Title Body orientation and face orientation: two factors controlling apes' behavior from humans Type (up) Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 4 Pages 216-223  
  Keywords Animals; *Attention; *Behavior, Animal; Cognition; *Concept Formation; Face; Facial Expression; Female; Fixation, Ocular; Hominidae/*psychology; Humans; Male; *Nonverbal Communication; *Orientation; Pan paniscus/psychology; Pan troglodytes/psychology; Pongo pygmaeus/psychology; *Posture; Social Perception; Species Specificity  
  Abstract A number of animal species have evolved the cognitive ability to detect when they are being watched by other individuals. Precisely what kind of information they use to make this determination is unknown. There is particular controversy in the case of the great apes because different studies report conflicting results. In experiment 1, we presented chimpanzees, orangutans, and bonobos with a situation in which they had to request food from a human observer who was in one of various attentional states. She either stared at the ape, faced the ape with her eyes closed, sat with her back towards the ape, or left the room. In experiment 2, we systematically crossed the observer's body and face orientation so that the observer could have her body and/or face oriented either towards or away from the subject. Results indicated that apes produced more behaviors when they were being watched. They did this not only on the basis of whether they could see the experimenter as a whole, but they were sensitive to her body and face orientation separately. These results suggest that body and face orientation encode two different types of information. Whereas face orientation encodes the observer's perceptual access, body orientation encodes the observer's disposition to transfer food. In contrast to the results on body and face orientation, only two of the tested subjects responded to the state of the observer's eyes.  
  Address Max Planck Institute for Evolutionary Anthropology, Deutscher Plaz 6, 04103 Leipzig, Germany. kaminski@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15034765 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2538  
Permanent link to this record
 

 
Author Bell, F.R. openurl 
  Title Sleep in the larger domesticated animals Type (up) Journal Article
  Year 1972 Publication Proceedings of the Royal Society of Medicine Abbreviated Journal Proc R Soc Med  
  Volume 65 Issue 2 Pages 176-177  
  Keywords Animals; Cattle/*physiology; Dreams; Electroencephalography; Goats/*physiology; Horses/*physiology; Posture; Sheep/*physiology; *Sleep; Sleep, REM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-9157 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4343589 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2826  
Permanent link to this record
 

 
Author Gomez Alvarez, C.B.; Rhodin, M.; Bobber, M.F.; Meyer, H.; Weishaupt, M.A.; Johnston, C.; Van Weeren, P.R. openurl 
  Title The effect of head and neck position on the thoracolumbar kinematics in the unridden horse Type (up) Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 445-451  
  Keywords Animals; Biomechanics; Head/*physiology; Horses/*physiology; Lumbar Vertebrae/physiology; Male; Neck/*physiology; Physical Conditioning, Animal/physiology; Posture/*physiology; Sports; Thoracic Vertebrae/physiology; Weight-Bearing  
  Abstract REASONS FOR PERFORMING STUDY: In many equestrian activities a specific position of head and/or neck is required that is dissimilar to the natural position. There is controversy about the effects of these positions on locomotion pattern, but few quantitative data are available. OBJECTIVES: To quantify the effects of 5 different head and neck positions on thoracolumbar kinematics of the horse. METHODS: Kinematics of 7 high level dressage horses were measured walking and trotting on an instrumented treadmill with the head and neck in the following positions: HNP2 = neck raised, bridge of the nose in front of the vertical; HNP3 = as HNP2 with bridge of the nose behind the vertical; HNP4 = head and neck lowered, nose behind the vertical; HNP5 = head and neck in extreme high position; HNP6 = head and neck forward and downward. HNP1 was a speed-matched control (head and neck unrestrained). RESULTS: The head and neck positions affected only the flexion-extension motion. The positions in which the neck was extended (HNP2, 3, 5) increased extension in the anterior thoracic region, but increased flexion in the posterior thoracic and lumbar region. For HNP4 the pattern was the opposite. Positions 2, 3 and 5 reduced the flexion-extension range of motion (ROM) while HNP4 increased it. HNP5 was the only position that negatively affected intravertebral pattern symmetry and reduced hindlimb protraction. The stride length was significantly reduced at walk in positions 2, 3, 4 and 5. CONCLUSIONS: There is a significant influence of head/neck position on back kinematics. Elevated head and neck induce extension in the thoracic region and flexion in the lumbar region; besides reducing the sagittal range of motion. Lowered head and neck produces the opposite. A very high position of the head and neck seems to disturb normal kinematics. POTENTIAL RELEVANCE: This study provides quantitative data on the effect of head/neck positions on thoracolumbar motion and may help in discussions on the ethical acceptability of some training methods.  
  Address Department of Equine Sciences, Utrecht University, Yalelaan 12, 3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402464 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3702  
Permanent link to this record
 

 
Author Weishaupt, M.A.; Wiestner, T.; von Peinen, K.; Waldern, N.; Roepstorff, L.; van Weeren, R.; Meyer, H.; Johnston, C. openurl 
  Title Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill Type (up) Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 387-392  
  Keywords Animals; Biomechanics; Exercise Test/instrumentation/methods/*veterinary; Forelimb/physiology; Gait; Head/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Neck/physiology; Physical Conditioning, Animal/methods/*physiology; Posture; Statistics, Nonparametric; Walking/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Little is known in quantitative terms about the influence of different head-neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. OBJECTIVE: To improve the understanding of forelimb-hindlimb balance and its underlying temporal changes in relation to different head and neck positions. METHODS: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 – free, unrestrained with loose reins; HNP2 – neck raised, bridge of the nose in front of the vertical; HNP3 – neck raised, bridge of the nose behind the vertical; HNP4 – neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 – neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 – neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity-matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). RESULTS: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore- and hindlimbs. CONCLUSIONS: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. POTENTIAL RELEVANCE: An extremely high HNP affects functionality much more than an extremely low neck.  
  Address Equine Hospital, University of Zurich, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402453 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3704  
Permanent link to this record
 

 
Author Birke, L.; Hockenhull, J.; Creighton, E.; Pinno, L.; Mee, J.; Mills, D. url  doi
openurl 
  Title Horses' responses to variation in human approach Type (up) Journal Article
  Year Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume In Press, Corrected Proof Issue Pages  
  Keywords Horse; Flight response; Human approach; Body posture; Approach speed; Natural horsemanship  
  Abstract The behaviour of humans around horses is thought to have a substantial impact on how people are perceived in subsequent interactions and many horse trainers give detailed advice on how handlers should behave when initially approaching a loose horse. Here we report on three studies designed to explore the effect of different human approach styles on the behaviour of naïve and experienced horses. In the first study, the change in flight distance (distance at which horses started to avoid an approaching human) of twelve semi-feral Dartmoor ponies, undergoing training to allow handling, was assessed. Over the 10 handling sessions median flight distance decreased significantly (p < 0.001) from 2.38 m to 0.00 m and there was a significant positive shift in the ponies' behaviour following the appearance of the researcher (p = 0.002). In a second study the effect of a direct (vigorous, swinging a lead rope and with eye contact) versus indirect (relaxed, no rope swinging and without eye contact) approach style was assessed on six adult experienced riding horses. The mean flight distance during a direct approach style (6.87 m) was significantly greater than that which occurred during an indirect approach style (2.32 m). Direction of approach was not found to significantly affect flight distance. In a third study, the effect of the rope was removed and a similar method to the second study applied to a group of naïve, feral ponies. The effect of different components of approach style, speed of approach, handler body posture and direction of gaze, which might contribute to observed differences in behavioural responses, were then examined systematically in this population. This revealed no significant difference in mean flight distance between the two approach styles (2.28 m indirect versus 2.37 m direct approach), but ponies were significantly more likely to move off in trot (p = 0.025) and to travel further (p = 0.001) when a direct approach was used. Speed of approach was the most salient factor, with a fast approach increasing both the tendency to move off in trot (p < 0.001) and distance travelled (p < 0.001). Body posture (relaxed or tense) had no effect, while flight distance was significantly greater when the person was looking away (p = 0.045). These results suggest horses may have an important egocentric spatial barrier, which perhaps relates to personal space and triggering of the flight response. Contrary to popular belief, body posture did not appear to be very important in the contexts examined unless accompanied by extraneous aids, while the speed of approach is particularly significant. These results are of important practical relevance in reducing the risk of injury, and the effective management of horses with minimal stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5401  
Permanent link to this record
 

 
Author Baudry, L.; Leroy, D.; Chollet, D. openurl 
  Title The effect of combined self- and expert-modelling on the performance of the double leg circle on the pommel horse Type (up)
  Year 2006 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci  
  Volume 24 Issue 10 Pages 1055-1063  
  Keywords Adolescent; Analysis of Variance; Child; *Expert Testimony; Feedback; Gymnastics/*physiology; Humans; *Leg/physiology; Movement/physiology; Physical Education and Training; Posture/physiology; Range of Motion, Articular/physiology; Retention (Psychology); *Video Recording  
  Abstract In this study, we investigated whether video modelling can enhance gymnasts' performance of the circle on a pommel horse. The procedure associated expert-modelling with self-modelling and quantitative performance analysis. Sixteen gymnasts were randomly assigned to one of two groups: (1) a modelling group, which received expert- and self-modelling, and performance feedback, or (2) a control group, which received no feedback. After five sessions of training, an analysis of variance with repeated measures indicated that the gains in the back, entry, front, and exit phases of the circle were greater for the modelling group than for the control group. During the training sessions, the gymnasts in the modelling group improved their body segmental alignment during the back phase more quickly than during the other phases. As predicted, although both groups performed the same number of circles (300 in 5 days, with 10 sequences of 6 circles), the modelling group improved their body segmental alignment more than the control group. It thus appears that immediate video modelling can help to correct complex sports movements such as the circle performed on the pommel horse. However, its effectiveness seemed to be dependent on the complexity of the phase.  
  Address CETAPS Laboratory, UPRES EA 3832, Faculty of Sports Sciences, Rouen University, Mont-Saint Aignan, France. ludovic_baudry@yahoo.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-0414 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17115520 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4026  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print