|   | 
Details
   web
Records
Author Yokoyama, S.; Radlwimmer, F.B.
Title (up) The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Aviad, A.D.; Houpt, J.B.
Title (up) The molecular weight of therapeutic hyaluronan (sodium hyaluronate): how significant is it? Type Journal Article
Year 1994 Publication The Journal of rheumatology Abbreviated Journal J Rheumatol
Volume 21 Issue 2 Pages 297-301
Keywords Animals; Horse Diseases/drug therapy; Horses; Humans; Hyaluronic Acid/*chemistry/*therapeutic use; Joint Diseases/*drug therapy/veterinary; Molecular Weight; Osteoarthritis/drug therapy/veterinary; Synovial Fluid/drug effects/physiology; Viscosity
Abstract Various molecular weight hyaluronic acid (HA) preparations have been injected into joints for the treatment of human and equine osteoarthritis. A therapeutic advantage has been claimed for commercial products with a molecular weight in the range found in normal synovial fluid (SF), compared to lower molecular weight products. But a correlation between molecular weight and efficacy is not borne out by an analysis of the available literature on clinical results. SF viscosity, HA concentration, HA molecular weight and rate of synthesis in joint disease. It is proposed that the beneficial effect of injected HA in joint disease may be due to pharmacological rather than to physical properties.
Address Rheumatic Disease Unit, Mount Sinai Hospital, University of Toronto, ON, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0315-162X ISBN Medium
Area Expedition Conference
Notes PMID:8182640 Approved no
Call Number refbase @ user @ Serial 35
Permanent link to this record
 

 
Author Griffin, B.
Title (up) The use of fecal markers to facilitate sample collection in group-housed cats Type Journal Article
Year 2002 Publication Contemporary Topics in Laboratory Animal Science / American Association for Laboratory Animal Science Abbreviated Journal Contemp Top Lab Anim Sci
Volume 41 Issue 2 Pages 51-56
Keywords Animals; Behavior, Animal; Biological Markers/*analysis; Cats/*physiology/psychology; Diet/veterinary; Feces/*chemistry; Food Coloring Agents/analysis; Housing, Animal; Individuality; Plastics/analysis; Specimen Handling/methods/*veterinary
Abstract The provision of proper social housing is a priority when designing an experiment using domestic cats as laboratory animals. When animals are group-housed, studies requiring analysis of stool samples from individual subjects pose difficulty in sample collection and identification. In this study, commercially available concentrated food colorings (known as bakers pastes) were used as fecal markers in group-housed cats. Cats readily consumed 0.5 ml of bakers paste food coloring once daily in canned cat food. Colorings served as fecal markers by imparting a distinct color to each cat s feces, allowing identification in the litter box. In addition, colored glitter (1/8 teaspoon in canned food) was fed to cats and found to be a reliable fecal marker. Long-term feeding of colorings and glitter was found to be safe and effective at yielding readily identifiable stools.
Address Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Alabama 36841, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1060-0558 ISBN Medium
Area Expedition Conference
Notes PMID:11958604 Approved no
Call Number Equine Behaviour @ team @ Serial 4165
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T.
Title (up) Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 41 Issue 21 Pages 6595-6604
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales
Abstract The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:12022863 Approved no
Call Number Equine Behaviour @ team @ Serial 3785
Permanent link to this record
 

 
Author Hagen, S.J.; Eaton, W.A.
Title (up) Two-state expansion and collapse of a polypeptide Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 301 Issue 4 Pages 1019-1027
Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics
Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.
Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10966803 Approved no
Call Number Equine Behaviour @ team @ Serial 3790
Permanent link to this record