toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rollot, Y.; Lecuyer, E.; Chateau, H.; Crevier-Denoix, N. openurl 
  Title (up) Development of a 3D model of the equine distal forelimb and of a GRF shoe for noninvasive determination of in vivo tendon and ligament loads and strains Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 677-682  
  Keywords Animals; Biomechanics; Floors and Floorcoverings; Forelimb/*physiology/ultrasonography; Gait/physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/methods/*veterinary; Ligaments, Articular/*physiology; Locomotion/*physiology; Models, Biological; Shoes; Tendons/*physiology; Toe Joint/physiology/ultrasonography  
  Abstract REASONS FOR PERFORMING STUDY: As critical locomotion events (e.g. high-speed and impacts during racing, jump landing) may contribute to tendinopathies, in vivo recording of gaits kinematic and dynamic parameters is essential for 3D reconstruction and analysis. OBJECTIVE: To propose a 3D model of the forelimb and a ground reaction force recording shoe (GRF-S) for noninvasively quantifying tendon and ligament loads and strains. METHODS: Bony segments trajectories of forelimbs placed under a power press were recorded using triads of ultrasonic kinematic markers linked to the bones. Compression cycles (from 500-6000 N) were applied for different hoof orientations. Locations of tendon and ligament insertions were recorded with regard to the triads. The GRF-S recorded GRF over the hoof wall and used four 3-axis force sensors sandwiched between a support shoe and the shoe to be tested. RESULTS: Validation of the model by comparing calculated and measured superficial digital flexor tendon strains, and evaluation of the role of proximal interphalangeal joint in straight sesamoidean ligament and oblique sesamoidean ligament strains, were successfully achieved. Objective comparisons of the 3 components of GRF over the hoof for soft and hard grounds could be recorded, where the s.d. of GRF norm was more important on hard ground at walk and trot. CONCLUSIONS: Soft grounds (sand and rubber) dissipate energy by lowering GRF amplitude and diminish bounces and vibrations at impact. At comparable speed, stance phase was longer on soft sand ground. POTENTIAL RELEVANCE: The conjugate use of the GRF-S and the numerical model would help to quantify and analyse ground/shoe combination on comfort, propulsion efficiency or lameness recovery.  
  Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, 7, Avenue du General de Gaulle, 94704 Maisons-Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656495 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3769  
Permanent link to this record
 

 
Author Barrey, E.; Desliens, F.; Poirel, D.; Biau, S.; Lemaire, S.; Rivero, J.L.L.; Langlois, B. openurl 
  Title (up) Early evaluation of dressage ability in different breeds Type Journal Article
  Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 34 Pages 319-324  
  Keywords Animals; Biomechanics; Breeding; Discriminant Analysis; Female; Forelimb; Gait/genetics/*physiology; Hindlimb; Horses/anatomy & histology/*genetics/*physiology; Male; Photography/veterinary; *Physical Conditioning, Animal; Sports  
  Abstract Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.  
  Address INRA, Station de Genetique Quantitative et Appliquee, Groupe Cheval, Jouy-en-Josas, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12405708 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3726  
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R. openurl 
  Title (up) Effect of early training on the jumping technique of horses Type Journal Article
  Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res  
  Volume 66 Issue 3 Pages 418-424  
  Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods  
  Abstract OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.  
  Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9645 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15822585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4037  
Permanent link to this record
 

 
Author Weishaupt, M.A.; Wiestner, T.; von Peinen, K.; Waldern, N.; Roepstorff, L.; van Weeren, R.; Meyer, H.; Johnston, C. openurl 
  Title (up) Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 387-392  
  Keywords Animals; Biomechanics; Exercise Test/instrumentation/methods/*veterinary; Forelimb/physiology; Gait; Head/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Neck/physiology; Physical Conditioning, Animal/methods/*physiology; Posture; Statistics, Nonparametric; Walking/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Little is known in quantitative terms about the influence of different head-neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. OBJECTIVE: To improve the understanding of forelimb-hindlimb balance and its underlying temporal changes in relation to different head and neck positions. METHODS: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 – free, unrestrained with loose reins; HNP2 – neck raised, bridge of the nose in front of the vertical; HNP3 – neck raised, bridge of the nose behind the vertical; HNP4 – neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 – neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 – neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity-matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). RESULTS: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore- and hindlimbs. CONCLUSIONS: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. POTENTIAL RELEVANCE: An extremely high HNP affects functionality much more than an extremely low neck.  
  Address Equine Hospital, University of Zurich, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402453 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3704  
Permanent link to this record
 

 
Author Takahashi, T.; Kasashima, Y.; Eto, D.; Mukai, K.; Hiraga, A. openurl 
  Title (up) Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 435-439  
  Keywords Animals; Biomechanics; Exercise Test/veterinary; Female; Forelimb/physiology; Hoof and Claw/physiology; Horses/*physiology; Male; Physical Conditioning, Animal/*methods/*physiology; Tarsal Joints/*physiology; Tarsus, Animal; Tendon Injuries/etiology/prevention & control/veterinary; Time Factors  
  Abstract REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.  
  Address Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402462 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4005  
Permanent link to this record
 

 
Author Bystrom, A.; Roepstorff, L.; Johnston, C. openurl 
  Title (up) Effects of draw reins on limb kinematics Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 452-456  
  Keywords Animals; Biomechanics; Exercise Test; Forelimb/physiology; Head/physiology; Hindlimb/physiology; Horses/*physiology; Humans; Movement/physiology; Neck/physiology; Physical Conditioning, Animal/*methods/*physiology; Weight-Bearing/physiology  
  Abstract REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.  
  Address Department of Equine Studies, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402465 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3701  
Permanent link to this record
 

 
Author Powers, P.; Harrison, A. openurl 
  Title (up) Effects of the rider on the linear kinematics of jumping horses Type Journal Article
  Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech  
  Volume 1 Issue 2 Pages 135-146  
  Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology  
  Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.  
  Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-3141 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14658371 Approved no  
  Call Number Serial 1904  
Permanent link to this record
 

 
Author Robert, C.; Audigie, F.; Valette, J.P.; Pourcelot, P.; Denoix, J.M. openurl 
  Title (up) Effects of treadmill speed on the mechanics of the back in the trotting saddlehorse Type Journal Article
  Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 33 Pages 154-159  
  Keywords Animals; Biomechanics; Electromyography/veterinary; Exercise Test/veterinary; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Range of Motion, Articular/*physiology; Spine/*physiology; Video Recording  
  Abstract Speed related changes in trunk mechanics have not yet been investigated, although high-speed training is currently used in the horse. To evaluate the effects of speed on back kinematics and trunk muscles activity, 4 saddle horses were recorded while trotting on a horizontal treadmill at speeds ranging from 3.5 to 6 m/s. The 3-dimensional (3-D) trajectories of skin markers on the left side of the horse and the dorsal midline of the trunk were established. Electrical activity was simultaneously obtained from the longissimus dorsi (LD) and rectus abdominis (RA) muscles using surface electrodes. Ten consecutive strides were analysed for each horse at each of the 5 velocity steps. Electromyographic and kinematic data were time-standardised to the duration of the stride cycle and compared using an analysis of variance. The back extended during the first part of each diagonal stance phase when the RA was active and the back flexed during the second part of each diagonal stance phase when the LD was active. The onset and end of muscle activity came earlier in the stride cycle and muscle activity intensity increased when speed increased. The amplitude of vertical movement of the trunk and the maximal angles of flexion decreased with increasing speed, whereas the extension angles remained unchanged. This resulted in a decreased range of back flexion-extension. This study confirms that the primary role of trunk muscles is to control the stiffness of the back rather than to induce movements. Understanding the effects of speed on the back of healthy horses is a prerequisite for the prevention and treatment of back pathology.  
  Address UMR INRA, Biomecanique et Pathologie Locomotrice du Cheval, UP d'Anatomie, Ecole Nationale Veterinaire d'Alfort, 7 Avenue du General de Gaulle, F-94704 Maisons-Alfort, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11721558 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4050  
Permanent link to this record
 

 
Author Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H. openurl 
  Title (up) Evaluation of pressure distribution under an English saddle at walk, trot and canter Type Journal Article
  Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J  
  Volume 36 Issue 8 Pages 754-757  
  Keywords Animals; Back/*physiology; Biomechanics; Body Weight/physiology; Exercise Test/veterinary; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Pressure  
  Abstract REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.  
  Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15656510 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4041  
Permanent link to this record
 

 
Author Winkelmayr, B.; Peham, C.; Fruhwirth, B.; Licka, T.; Scheidl, M. openurl 
  Title (up) Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter Type Journal Article
  Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl  
  Volume Issue 36 Pages 406-410  
  Keywords Animals; Back/*physiology; Back Pain/etiology/veterinary; Biomechanics; Exercise Test/veterinary; Female; Gait/physiology; Horse Diseases/etiology; Horses/*physiology; Humans; Locomotion/physiology; Male; Movement/*physiology; *Physical Conditioning, Animal/instrumentation/methods/physiology; *Pressure; Weight-Bearing/*physiology  
  Abstract REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.  
  Address Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17402456 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4007  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print