toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Skov-Rackette, S.I.; Miller, N.Y.; Shettleworth, S.J. doi  openurl
  Title (down) What-where-when memory in pigeons Type Journal Article
  Year 2006 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 4 Pages 345-358  
  Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning, Operant/physiology; Memory/*physiology; Reinforcement (Psychology); Space Perception/*physiology; Spatial Behavior/physiology; Teaching; Visual Perception/physiology  
  Abstract The authors report a novel approach to testing episodic-like memory for single events. Pigeons were trained in separate sessions to match the identity of a sample on a touch screen, to match its location, and to report on the length of the retention interval. When these 3 tasks were mixed randomly within sessions, birds were more than 80% correct on each task. However, performance on 2 different tests in succession after each sample was not consistent with an integrated memory for sample location, time, and identity. Experiment 2 tested binding of location and identity memories in 2 different ways. The results were again consistent with independent feature memories. Implications for tests of episodic-like memory are discussed.  
  Address Department of Psychology, University of Toronto, Toronto, ON, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17044738 Approved no  
  Call Number refbase @ user @ Serial 357  
Permanent link to this record
 

 
Author Lazareva, O.F.; Smirnova, A.A.; Bagozkaja, M.S.; Zorina, Z.A.; Rayevsky, V.V.; Wasserman, E.A. doi  openurl
  Title (down) Transitive responding in hooded crows requires linearly ordered stimuli Type Journal Article
  Year 2004 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav  
  Volume 82 Issue 1 Pages 1-19  
  Keywords Animals; *Association; Cognition/physiology; Crows; Discrimination (Psychology); *Discrimination Learning; Feedback; Reinforcement (Psychology); Visual Perception/physiology  
  Abstract Eight crows were taught to discriminate overlapping pairs of visual stimuli (A+ B-, B+ C-, C+ D-, and D+ E-). For 4 birds, the stimuli were colored cards with a circle of the same color on the reverse side whose diameter decreased from A to E (ordered feedback group). These circles were made available for comparison to potentially help the crows order the stimuli along a physical dimension. For the other 4 birds, the circles corresponding to the colored cards had the same diameter (constant feedback group). In later testing, a novel choice pair (BD) was presented. Reinforcement history involving stimuli B and D was controlled so that the reinforcement/nonreinforcement ratios for the latter would be greater than for the former. If, during the BD test, the crows chose between stimuli according to these reinforcement/nonreinforcement ratios, then they should prefer D; if they chose according to the diameter of the feedback stimuli, then they should prefer B. In the ordered feedback group, the crows strongly preferred B over D; in the constant feedback group, the crows' choice did not differ significantly from chance. These results, plus simulations using associative models, suggest that the orderability of the postchoice feedback stimuli is important for crows' transitive responding.  
  Address Institute of Higher Nervous Activity, Moscow State University. olga-lazareva@uiowa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15484868 Approved no  
  Call Number refbase @ user @ Serial 612  
Permanent link to this record
 

 
Author Kaiser, D.H.; Zentall, T.R.; Neiman, E. openurl 
  Title (down) Timing in pigeons: effects of the similarity between intertrial interval and gap in a timing signal Type Journal Article
  Year 2002 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 28 Issue 4 Pages 416-422  
  Keywords Animals; *Attention; Columbidae; *Conditioning, Operant; Discrimination Learning; Mental Recall; Probability Learning; *Reinforcement (Psychology); *Reinforcement Schedule; Retention (Psychology); Time Factors; *Time Perception/physiology  
  Abstract Previous research suggests that when a fixed interval is interrupted (known as the gap procedure), pigeons tend to reset memory and start timing from 0 after the gap. However, because the ambient conditions of the gap typically have been the same as during the intertrial interval (ITI), ambiguity may have resulted. In the present experiment, the authors found that when ambient conditions during the gap were similar to the ITI, pigeons tended to reset memory, but when ambient conditions during the gap were different from the ITI, pigeons tended to stop timing, retain the duration of the stimulus in memory, and add to that time when the stimulus reappeared. Thus, when the gap was unambiguous, pigeons timed accurately.  
  Address Department of Psychology, East Carolina University, Greenville, North Carolina 27858, USA. kaiserd@mail.ecu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12395499 Approved no  
  Call Number refbase @ user @ Serial 238  
Permanent link to this record
 

 
Author Brennan, P.A. doi  openurl
  Title (down) The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
  Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 46 Issue 3 Pages 231-240  
  Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology  
  Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325224 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4191  
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S. openurl 
  Title (down) The mind through chick eyes: memory, cognition and anticipation Type Journal Article
  Year 2003 Publication Zoological Science Abbreviated Journal Zoolog Sci  
  Volume 20 Issue 4 Pages 395-408  
  Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology  
  Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”  
  Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0003 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12719641 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2858  
Permanent link to this record
 

 
Author Levy, J. openurl 
  Title (down) The mammalian brain and the adaptive advantage of cerebral asymmetry Type Journal Article
  Year 1977 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 299 Issue Pages 264-272  
  Keywords *Adaptation, Physiological; Adaptation, Psychological/physiology; Animals; Behavior, Animal/physiology; Brain/*physiology; Cognition/physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Intelligence; Perception/physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:280207 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4137  
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title (down) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
  Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Zentall, T.R. doi  openurl
  Title (down) Support for a theory of memory for event duration must distinguish between test-trial ambiguity and actual memory loss Type Journal Article
  Year 1999 Publication Journal of the experimental analysis of behavior Abbreviated Journal J Exp Anal Behav  
  Volume 72 Issue 3 Pages 467-472  
  Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning, Operant/physiology; Discrimination Learning/physiology; Memory/*physiology; *Psychological Theory; Time Factors; Time Perception/physiology  
  Abstract Staddon and Higa's (1999) trace-strength theory of timing and memory for event duration can account for pigeons' bias to “choose short” when retention intervals are introduced and to “choose long” when, following training with a fixed retention interval, retention intervals are shortened. However, it does not account for the failure of pigeons to choose short when the intertrial interval is distinct from the retention interval. That finding suggests that stimulus generalization (or ambiguity) between the intertrial interval and the retention interval may result in an effect that has been attributed to memory loss. Such artifacts must be eliminated before a theory of memory for event duration can be adequately tested.  
  Address Department of Psychology, University of Kentucky, Lexington 40506, USA. zentall@pop.uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10605105 Approved no  
  Call Number refbase @ user @ Serial 251  
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J. doi  openurl
  Title (down) Photopigment basis for dichromatic color vision in the horse Type Journal Article
  Year 2001 Publication Journal of Vision Abbreviated Journal J Vis  
  Volume 1 Issue 2 Pages 80-87  
  Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology  
  Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.  
  Address Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7362 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12678603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4060  
Permanent link to this record
 

 
Author Parr, L.A. doi  openurl
  Title (down) Perceptual biases for multimodal cues in chimpanzee (Pan troglodytes) affect recognition Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 171-178  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/physiology; Cues; Discrimination Learning/*physiology; Facial Expression; Female; Male; Pan troglodytes/*psychology; Perceptual Masking/*physiology; Photic Stimulation; Recognition (Psychology)/*physiology; Visual Perception/physiology; *Vocalization, Animal  
  Abstract The ability of organisms to discriminate social signals, such as affective displays, using different sensory modalities is important for social communication. However, a major problem for understanding the evolution and integration of multimodal signals is determining how humans and animals attend to different sensory modalities, and these different modalities contribute to the perception and categorization of social signals. Using a matching-to-sample procedure, chimpanzees discriminated videos of conspecifics' facial expressions that contained only auditory or only visual cues by selecting one of two facial expression photographs that matched the expression category represented by the sample. Other videos were edited to contain incongruent sensory cues, i.e., visual features of one expression but auditory features of another. In these cases, subjects were free to select the expression that matched either the auditory or visual modality, whichever was more salient for that expression type. Results showed that chimpanzees were able to discriminate facial expressions using only auditory or visual cues, and when these modalities were mixed. However, in these latter trials, depending on the expression category, clear preferences for either the visual or auditory modality emerged. Pant-hoots and play faces were discriminated preferentially using the auditory modality, while screams were discriminated preferentially using the visual modality. Therefore, depending on the type of expressive display, the auditory and visual modalities were differentially salient in ways that appear consistent with the ethological importance of that display's social function.  
  Address Division of Psychobiology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, GA 30329, Atlanta, USA. parr@rmy.emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14997361 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print