toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pennisi, E. doi  openurl
  Title Animal cognition. Social animals prove their smarts Type
  Year 2006 Publication (up) Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 312 Issue 5781 Pages 1734-1738  
  Keywords Animals; *Behavior, Animal; *Birds; *Cognition; Comprehension; Cues; Food; Hominidae/*psychology; *Intelligence; Learning; Memory; *Social Behavior  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16794055 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2836  
Permanent link to this record
 

 
Author Pennisi, E. openurl 
  Title Schizophrenia clues from monkeys Type
  Year 1997 Publication (up) Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 277 Issue 5328 Pages 900  
  Keywords Animals; Antipsychotic Agents/pharmacology; Behavior, Animal/drug effects; *Cercopithecus aethiops; Clozapine/pharmacology; Cognition/drug effects; *Disease Models, Animal; Dopamine/*metabolism; Excitatory Amino Acid Antagonists/pharmacology; Memory/drug effects; Phencyclidine/*pharmacology; Prefrontal Cortex/*metabolism; Schizophrenia/chemically induced/drug therapy/*metabolism; Schizophrenic Psychology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9281070 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2844  
Permanent link to this record
 

 
Author Williams, N. openurl 
  Title Evolutionary psychologists look for roots of cognition Type
  Year 1997 Publication (up) Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 275 Issue 5296 Pages 29-30  
  Keywords Animals; *Behavior, Animal; Birds; *Cognition; *Evolution; Female; Humans; Macaca mulatta/psychology; Male; Memory; Reward; *Social Sciences  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8999531 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2845  
Permanent link to this record
 

 
Author Straub, A. doi  openurl
  Title An intelligent crow beats a lab Type Journal Article
  Year 2007 Publication (up) Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 316 Issue 5825 Pages 688  
  Keywords Animals; *Behavior, Animal; *Cognition; *Crows; Dogs; Intelligence; Memory  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-9203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17478698 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4102  
Permanent link to this record
 

 
Author Neuringer, A. doi  openurl
  Title Reinforced variability in animals and people: implications for adaptive action Type Journal Article
  Year 2004 Publication (up) The American Psychologist Abbreviated Journal Am Psychol  
  Volume 59 Issue 9 Pages 891-906  
  Keywords Animals; Behavior, Animal; *Choice Behavior; Conditioning, Operant; Creativeness; Discrimination (Psychology); Humans; Memory; Problem Solving; *Reinforcement (Psychology)  
  Abstract Although reinforcement often leads to repetitive, even stereotyped responding, that is not a necessary outcome. When it depends on variations, reinforcement results in responding that is diverse, novel, indeed unpredictable, with distributions sometimes approaching those of a random process. This article reviews evidence for the powerful and precise control by reinforcement over behavioral variability, evidence obtained from human and animal-model studies, and implications of such control. For example, reinforcement of variability facilitates learning of complex new responses, aids problem solving, and may contribute to creativity. Depression and autism are characterized by abnormally repetitive behaviors, but individuals afflicted with such psychopathologies can learn to vary their behaviors when reinforced for so doing. And reinforced variability may help to solve a basic puzzle concerning the nature of voluntary action.  
  Address Department of Psychology, Reed College, Portland, OR 97202, USA. allen.neuringer@reed.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-066X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15584823 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4106  
Permanent link to this record
 

 
Author Zentall, T.R. openurl 
  Title A cognitive behaviorist approach to the study of animal behavior Type Journal Article
  Year 2002 Publication (up) The Journal of general psychology Abbreviated Journal J Gen Psychol  
  Volume 129 Issue 4 Pages 328-363  
  Keywords Animals; *Attention; *Behavior, Animal; *Cognition; Learning; *Memory; Social Behavior  
  Abstract Traditional psychological approaches to animal learning and behavior have involved either the atheoretical behaviorist approach proposed by B. F. Skinner (1938), in which input-output relations are described in response to environmental manipulations, or the theoretical behaviorist approach offered by C. L Hull (1943), in which associations mediated by several hypothetical constructs and intervening variables are formed between stimuli and responses. Recently, the application of a cognitive behaviorist approach to animal learning and behavior has been found to have considerable value as a research tool. This perspective has grown out of E. C. Tolman's cognitive approach to learning in which behavior is mediated by mechanisms that are not directly observable but can be inferred from the results of critical experiments. In the present article, the author presents several examples of the successful application of the cognitive behaviorist approach. In each case, the experiments have been designed to distinguish between more traditional mechanisms and those mediated by hypothesized internal representations. These examples were selected because the evidence suggests that some form of active cognitive organization is needed to account for the behavioral results.  
  Address Department of Psychology, University of Kentucky, Lexington 40506, USA. Zentall@uky.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1309 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12494989 Approved no  
  Call Number refbase @ user @ Serial 214  
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S. openurl 
  Title The mind through chick eyes: memory, cognition and anticipation Type Journal Article
  Year 2003 Publication (up) Zoological Science Abbreviated Journal Zoolog Sci  
  Volume 20 Issue 4 Pages 395-408  
  Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology  
  Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”  
  Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0289-0003 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12719641 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2858  
Permanent link to this record
 

 
Author Healy, S.D.; Jones, C.M. url  doi
openurl 
  Title Animal learning and memory: an integration of cognition and ecology Type Journal Article
  Year 2002 Publication (up) Zoology Abbreviated Journal Zoology  
  Volume 105 Issue 4 Pages 321-327  
  Keywords cognitive ecology; spatial learning and memory; adaptive specialisation  
  Abstract Summary A wonderfully lucid framework for the ways to understand animal behaviour is that represented by the four [`]whys' proposed by Tinbergen (1963). For much of the past three decades, however, these four avenues have been pursued more or less in parallel. Functional questions, for example, have been addressed by behavioural ecologists, mechanistic questions by psychologists and ethologists, ontogenetic questions by developmental biologists and neuroscientists and phylogenetic questions by evolutionary biologists. More recently, the value of integration between these differing views has become apparent. In this brief review, we concentrate especially on current attempts to integrate mechanistic and functional approaches. Most of our understanding of learning and memory in animals comes from the psychological literature, which tends to use only rats or pigeons, and more occasionally primates, as subjects. The underlying psychological assumption is of general processes that are similar across species and contexts rather than a range of specific abilities. However, this does not seem to be entirely true as several learned behaviours have been described that are specific to particular species or contexts. The first conspicuous exception to the generalist assumption was the demonstration of long delay taste aversion learning in rats (Garcia et al., 1955), in which it was shown that a stimulus need not be temporally contiguous with a response for the animal to make an association between food and illness. Subsequently, a number of other examples, such as imprinting and song learning in birds (e.g., Bolhuis and Honey, 1998; Catchpole and Slater, 1995; Horn, 1998), have been thoroughly researched. Even in these cases, however, it has been typical for only a few species to be studied (domestic chicks provide the [`]model' imprinting species and canaries and zebra finches the song learning [`]models'). As a result, a great deal is understood about the neural underpinnings and development of the behaviour, but substantially less is understood about interspecific variation and whether variation in behaviour is correlated with variation in neural processing (see review by Tramontin and Brenowitz, 2000 but see ten Cate and Vos, 1999).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-2006 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4741  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print