|   | 
Details
   web
Records
Author Dunbar, R.I.M.
Title Male and female brain evolution is subject to contrasting selection pressures in primates Type Journal Article
Year 2007 Publication (up) BMC Biology Abbreviated Journal BMC Biol
Volume 5 Issue Pages 21
Keywords Animals; *Brain/physiology; *Evolution; Female; Humans; Male; *Selection (Genetics); *Sex Characteristics
Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the “social brain” hypothesis) is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20) add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative) is related most closely to neocortex volume, but male sociality (which is more competitive and combative) is more closely related to subcortical units (notably those associated with emotional responses). Thus different brain units have responded to different selection pressures.
Address British Academy Centenary Research Project, School of Biological Sciences, University of Liverpool, Liverpool, UK. rimd@liv.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1741-7007 ISBN Medium
Area Expedition Conference
Notes PMID:17493267 Approved no
Call Number Serial 2100
Permanent link to this record
 

 
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A.
Title The emergence of leaders and followers in foraging pairs when the qualities of individuals differ Type Journal Article
Year 2008 Publication (up) BMC Evolutionary Biology Abbreviated Journal BMC Evol Biol
Volume 8 Issue Pages 51
Keywords Animals; *Feeding Behavior; *Food Chain; *Models, Biological; *Social Dominance
Abstract BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.
Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. sean.rands@bristol.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2148 ISBN Medium
Area Expedition Conference
Notes PMID:18282297 Approved no
Call Number Equine Behaviour @ team @ Serial 5126
Permanent link to this record
 

 
Author Cancedda, M.
Title [Social and behavioral organization of horses on the Giara (Sardinia): distribution and aggregation] Type Journal Article
Year 1990 Publication (up) Bollettino della Societa italiana di biologia sperimentale Abbreviated Journal Boll Soc Ital Biol Sper
Volume 66 Issue 11 Pages 1089-1096
Keywords Animals; *Animals, Wild/physiology/psychology; Environment; Female; *Horses/physiology/psychology; Italy; Male; Population Density; Sexual Behavior, Animal; *Social Behavior; Social Dominance; Water
Abstract In this paper some considerations on the environment of the 42 Kmq of the volcanic-basaltic Giara tableland are discussed. Conditioning by the environment and its effect on the distribution of a population of 712 horses is illustrated in view of their social and behavioural organization.
Address Istituto di Fisiologia Generale e Speciale, Universita di Sassari
Corporate Author Thesis
Publisher Place of Publication Editor
Language Italian Summary Language Original Title Introduzione all'organizzazione sociale e comportamentale dei cavallini sulla Giara (Sardegna): distribuzione ed aggregazione
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0037-8771 ISBN Medium
Area Expedition Conference
Notes PMID:2095819 Approved no
Call Number refbase @ user @ Serial 673
Permanent link to this record
 

 
Author Verheyen, K.; Price, J.; Lanyon, L.; Wood, J.
Title Exercise distance and speed affect the risk of fracture in racehorses Type Journal Article
Year 2006 Publication (up) Bone Abbreviated Journal Bone
Volume 39 Issue 6 Pages 1322-1330
Keywords Animals; Case-Control Studies; Cohort Studies; England; Exertion; Female; Fractures, Bone/etiology/*veterinary; Horse Diseases/*etiology; Horses/*injuries; Male; Physical Conditioning, Animal/adverse effects/methods; Poisson Distribution; Prospective Studies; Regression Analysis; Risk Factors; Running/injuries/physiology
Abstract In order to gain insight into those training regimens that can minimise the risk of fracture in athletic populations, we conducted a large epidemiological study in racehorses. Thoroughbred racehorses provide a suitable model for studying fracture development and exercise-related risk factors in physically active populations. They represent a homogeneous population, undertaking intensive exercise programmes that are sufficiently heterogeneous to determine those factors that influence injury risk. Daily exercise information was recorded for a cohort of 1178 thoroughbreds that were monitored for up to 2 years. A total of 148 exercise-induced fractures occurred in the study population. Results from a nested case-control study showed a strong interactive effect of exercise distances at different speeds on fracture risk. Horses that exceeded 44 km at canter (< or =14 m/s) and 6 km at gallop (>14 m/s) in a 30-day period were at particularly increased risk of fracture. These distances equate to ca. 7700 bone loading cycles at canter and 880 loading cycles at gallop. Fifty-six fractures occurred in the subset of study horses that were followed since entering training as yearlings, when skeletally immature (n = 335). Cohort analysis of this data set showed that, in previously untrained bones, accumulation of canter exercise increased the risk of fracture (P < or = 0.01), whereas accumulation of high-speed gallop exercise had a protective effect (P < 0.01). However, increasing distances at canter and gallop in short time periods (up to one month) were associated with an increasing fracture risk. All training exercise involves a balance between the risk of fracture inherent in exposure to loading and the beneficial effect that loading has by stimulating bone cells to produce a more robust architecture. Results from our study provide important epidemiological evidence of the effects of physical exercise on bone adaptation and injury risk and can be used to inform the design of safer exercise regimens in physically active populations.
Address Epidemiology Unit, Animal Health Trust, Newmarket, United Kingdom. kverheyen@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8756-3282 ISBN Medium
Area Expedition Conference
Notes PMID:16926125 Approved no
Call Number Equine Behaviour @ team @ Serial 4030
Permanent link to this record
 

 
Author Rogers, L.J.
Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
Year 2000 Publication (up) Brain and Language Abbreviated Journal Brain Lang
Volume 73 Issue 2 Pages 236-253
Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology
Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.
Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-934X ISBN Medium
Area Expedition Conference
Notes PMID:10856176 Approved no
Call Number Equine Behaviour @ team @ Serial 4621
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H.
Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
Year 2006 Publication (up) Brain Research Bulletin Abbreviated Journal Brain Res Bull
Volume 70 Issue 2 Pages 124-157
Keywords Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves
Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.
Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-9230 ISBN Medium
Area Expedition Conference
Notes PMID:16782503 Approved no
Call Number Equine Behaviour @ team @ Serial 2623
Permanent link to this record
 

 
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication (up) Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res
Volume 3 Issue 3-4 Pages 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year 2006 Publication (up) Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
Year 2003 Publication (up) Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 62 Issue 2 Pages 108-116
Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity
Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.
Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12937349 Approved no
Call Number refbase @ user @ Serial 367
Permanent link to this record
 

 
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G.
Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
Year 1995 Publication (up) Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 45 Issue 1 Pages 54-61
Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity
Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:7866771 Approved no
Call Number refbase @ user @ Serial 379
Permanent link to this record