toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shettleworth, S.J. doi  openurl
  Title Cognitive science: rank inferred by reason Type Journal Article
  Year 2004 Publication (down) Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 732-733  
  Keywords Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306792 Approved no  
  Call Number refbase @ user @ Serial 365  
Permanent link to this record
 

 
Author Conradt, L.; Roper, T.J. url  doi
openurl 
  Title Group decision-making in animals Type Journal Article
  Year 2003 Publication (down) Nature Abbreviated Journal Nature  
  Volume 421 Issue 6919 Pages 155-158  
  Keywords Animals; Behavior, Animal/*physiology; *Decision Making; Democracy; Group Processes; *Models, Biological; Population Density; Social Behavior  
  Abstract Groups of animals often need to make communal decisions, for example about which activities to perform, when to perform them and which direction to travel in; however, little is known about how they do so. Here, we model the fitness consequences of two possible decision-making mechanisms: 'despotism' and 'democracy'. We show that under most conditions, the costs to subordinate group members, and to the group as a whole, are considerably higher for despotic than for democratic decisions. Even when the despot is the most experienced group member, it only pays other members to accept its decision when group size is small and the difference in information is large. Democratic decisions are more beneficial primarily because they tend to produce less extreme decisions, rather than because each individual has an influence on the decision per se. Our model suggests that democracy should be widespread and makes quantitative, testable predictions about group decision-making in non-humans.  
  Address School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK. l.conradt@sussex.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12520299 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5136  
Permanent link to this record
 

 
Author Suzuki, Y.; Toquenaga, Y. doi  openurl
  Title Effects of information and group structure on evolution of altruism: analysis of two-score model by covariance and contextual analyses Type Journal Article
  Year 2005 Publication (down) Journal of theoretical biology Abbreviated Journal J. Theor. Biol.  
  Volume 232 Issue 2 Pages 191-201  
  Keywords *Altruism; Analysis of Variance; *Communication; Cooperative Behavior; *Evolution; Game Theory; *Group Structure; Humans; Models, Genetic; Models, Psychological; Selection (Genetics); Trust  
  Abstract An altruistic individual has to gamble on cooperation to a stranger because it does not know whether the stranger is trustworthy before direct interaction. Nowak and Sigmund (Nature 393 (1998a) 573; J. Theor. Biol. 194 (1998b) 561) presented a new theoretical framework of indirect reciprocal altruism by image scoring game where all individuals are informed about a partner's behavior from its image score without direct interaction. Interestingly, in a simplified version of the image scoring game, the evolutionarily stability condition for altruism became a similar form of Hamilton's rule, i.e. inequality that the probability of getting correct information is more than the ratio of cost to benefit. Since the Hamilton's rule was derived by evolutionarily stable analysis, the evolutionary meaning of the probability of getting correct information has not been clearly examined in terms of kin and group selection. In this study, we applied covariance analysis to the two-score model for deriving the Hamilton's rule. We confirmed that the probability of getting correct information was proportional to the bias of altruistic interactions caused by using information about a partner's image score. The Hamilton's rule was dependent on the number of game bouts even though the information reduced the risk of cooperation to selfish one at the first encounter. In addition, we incorporated group structure to the two-score model to examine whether the probability of getting correct information affect selection for altruism by group selection. We calculated a Hamilton's rule of group selection by contextual analysis. Group selection is very effective when either the probability of getting correct information or that of future interaction, or both are low. The two Hamilton's rules derived by covariance and contextual analyses demonstrated the effects of information and group structure on the evolution of altruism. We inferred that information about a partner's behavior and group structure can produce flexible pathways for the evolution of altruism.  
  Address Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-Nou-Dai, Tsukuba, Ibaraki 305-8572, Japan. yukari@pe.ies.life.tsukuba.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15530489 Approved no  
  Call Number refbase @ user @ Serial 556  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
  Year 2001 Publication (down) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 123 Issue 27 Pages 6649-6653  
  Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding  
  Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  
  Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11439052 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3788  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication (down) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author Hagen, S.J.; Eaton, W.A. doi  openurl
  Title Two-state expansion and collapse of a polypeptide Type Journal Article
  Year 2000 Publication (down) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 301 Issue 4 Pages 1019-1027  
  Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics  
  Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.  
  Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10966803 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3790  
Permanent link to this record
 

 
Author Pierce, M.M.; Nall, B.T. doi  openurl
  Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
  Year 2000 Publication (down) Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 298 Issue 5 Pages 955-969  
  Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics  
  Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  
  Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10801361 Approved no  
  Call Number refbase @ user @ Serial 3853  
Permanent link to this record
 

 
Author Wilson, M.T.; Silvestrini, M.C.; Morpurgo, L.; Brunori, M. openurl 
  Title Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551) Type Journal Article
  Year 1979 Publication (down) Journal of Inorganic Biochemistry Abbreviated Journal J Inorg Biochem  
  Volume 11 Issue 2 Pages 95-100  
  Keywords Animals; Copper; Cytochrome c Group/*metabolism; Electron Transport; Kinetics; Metalloproteins/*metabolism; Plant Proteins/*metabolism; *Plants, Toxic; Pseudomonas aeruginosa/*metabolism; Toxicodendron/*metabolism  
  Abstract The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-0134 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:228006 Approved no  
  Call Number refbase @ user @ Serial 3879  
Permanent link to this record
 

 
Author Wasserman, E.A. openurl 
  Title The science of animal cognition: past, present, and future Type Journal Article
  Year 1997 Publication (down) Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 23 Issue 2 Pages 123-135  
  Keywords Animal Communication; Animal Population Groups/*psychology; Animals; Behavior, Animal; Behavioral Sciences/*trends; *Cognition; Evolution; Forecasting; Humans; Intelligence  
  Abstract The field of animal cognition is strongly rooted in the philosophy of mind and in the theory of evolution. Despite these strong roots, work during the most famous and active period in the history of our science-the 1930s, 1940s, and 1950s-may have diverted us from the very questions that were of greatest initial interest to the comparative analysis of learning and behavior. Subsequently, the field has been in steady decline despite its increasing breadth and sophistication. Renewal of the field of animal cognition may require a return to the original questions of animal communication and intelligence using the most advanced tools of modern psychological science. Reclaiming center stage in contemporary psychology will be difficult; planning that effort with a host of strategies should enhance the chances of success.  
  Address Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9095537 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2779  
Permanent link to this record
 

 
Author Suagee-Bedore, J.K.; Linden, D.R.; Bennett-Wimbush, K. url  doi
openurl 
  Title Effect of Pen Size on Stress Responses of Stall-Housed Horses Receiving One Hour of Daily Turnout Type Journal Article
  Year 2021 Publication (down) Journal of Equine Veterinary Science Abbreviated Journal J. Equine Vet. Sci.  
  Volume 98 Issue Pages 103366  
  Keywords Agonistic behaviors; Cortisol; Group turnout; Paddock sizes  
  Abstract Group turnout provides important socializing opportunities for horses, particularly those that are primarily stalled. A high percentage of equine injuries occur during group turnout, which could partly be due to the physical constraints of fencing. To investigate appropriate paddock sizes for group turnouts, horses (n = 12) from a single herd were divided into groups of 4, stalled for 24 hours, and then turned out for 1 hour into one of three differently sized pens: 342, 263, and 184 m2 per horse. Groups rotated through pens across 3 days, receiving one treatment per day. Blood was sampled for cortisol concentrations at 08:00 hours each morning, and then at 15 and 60 minutes into the turn out sessions, and 60 minutes after return to individual stalls. Groups rotated through three turnout times: 09:00, 12:00, 14:00 hours. Counts of agonistic behaviors (chasing, contact biting, and kicking) and low-level threats (pinned ears, tail swishing, bite and kick threats) were recorded. When turned out in pens that provided 342 m2 per horse, horses exhibited reduced plasma cortisol concentrations by 15 minutes after turnout and at 1 hour after return to their stalls (P < .05). Horses in pens providing 184 m2 per horse exhibited greater agonistic (P < .001) and low-level threat (P < .01) behaviors than horses in larger pens. These data provide insight into appropriate pen sizes for horses from established herds. Providing at least 342 m2 per horse may reduce the chance of injury in horses accustomed to group turnout.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-0806 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6694  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print