toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smith, S.; Goldman, L. url  openurl
  Title Color discrimination in horses Type Journal Article
  Year 1999 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 62 Issue 1 Pages 13-25  
  Keywords Horses; Vision; Color; Discrimination; Behavior  
  Abstract Four Arabian horses and one Thoroughbred were presented with a series of two-choice color vs. gray discrimination problems. Testing was done in a stall containing a wall with two translucent panels that were illuminated from behind by light projected through color or gray filters to provide the discriminative stimuli. Horses first learned to push one of the panels in order to receive the food reward behind the positive stimulus in an achromatic light-dark discrimination task, and were then tested on their ability to discriminate between gray and four individual colors: red (617 nm), yellow (581 nm), green (538 nm), and blue (470 nm). The criterion for learning was set at 85% correct responses, and final testing for all color vs. gray discriminations involved grays of varying intensities, making brightness an irrelevant cue. Three subjects were tested with all four colors. Two of those subjects successfully reached the criterion for learning on all four color vs. gray discriminations, while the third reached criterion with red and blue, but performed at chance levels for yellow and green. A fourth horse was only tested with green and yellow, and a fifth only with blue, and both of those horses successfully reached criterion on the discriminations they attempted. With the exception of the one subject's poor performance with yellow and green, there was no significant difference between horses on any of the discrimination tasks, and no significant difference in their performance with different colors. The results suggest that horses have color vision that is at least dichromatic, although partial color-blindness may occur in some individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number refbase @ user @ Serial 850  
Permanent link to this record
 

 
Author Pick, D.F.; Lovell, G.; Brown, S.; Dail, D. url  doi
openurl 
  Title Equine color perception revisited Type Journal Article
  Year 1994 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 42 Issue 1 Pages 61-65  
  Keywords Equine; Color perception; Dichromat  
  Abstract An attempt to replicate Grzimek (1952; Z. Tierpsychol., 27: 330-338) is reported where a Quarter-Horse mare chose between colored and gray stimuli for food reinforcement. Stimuli varied across a broad range of reflectance values. A double-blind procedure with additional controls for auditory, olfactory, tactile, and position cues was used. The subject could reliably discriminate blue (462 nm) vs. gray, and red (700 nm) vs. gray without regard to reflectance (P<0.001), but could not discriminate green (496 nm) vs. gray. It is suggested that horses are dichromats in a manner similar to swine and cattle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Equine Behaviour @ team @ Serial 4368  
Permanent link to this record
 

 
Author Pick, D. Kendra, B.; Steciuch, C. pdf  openurl
  Title The Familiarity Heuristic in the Horse (Equus caballus) Type Conference Article
  Year 2015 Publication Proceedings of the 3. International Equine Science Meeting Abbreviated Journal Proc. 3. Int. Equine. Sci. Mtg  
  Volume Issue Pages  
  Keywords color perception, learning theory, prospect theory  
  Abstract This study replicated an unreported finding observed in a color perception experiment (Pick, Lovell, Brown, & Dail, 1994) where, after using the method of successive approximations to train a blue-gray discrimination, red-gray trials were initiated without further training. Although a gray choice had never been reinforced, the subject chose gray on the first 20 trials (p < .000001). In the study reported here, a horse was trained to approach a red feed bucket and not a green feed bucket. After the subject mastered the discrimination, a blue bucket was substituted for the previously reinforced red bucket. With double-blind controls in place, the subject chose the unreinforced green bucket on 15 out of the first 20 blue-green trials yielding a binomial p = 0.0148 that this outcome could be due to chance alone. These results are contrary to all behavioristic psychological learning theories, but consistent with prospect theory (Kahneman & Tversky, 1979). Prospect theory predicts that given a choice between two previously unreinforced stimuli, one familiar and the other novel, humans will choose the familiar. It is argued that the bias toward the familiar is the basis to a heuristic that has a genetic origin and should exist in other animals on the phylogenetic scale. The results of this study indicate that the heuristic is available at least as far down the scale as the horse. Conceptual replications using shape stimuli and sound stimuli are in progress.  
  Address  
  Corporate Author Pick, D. Thesis  
  Publisher Xenophon Publishing Place of Publication Wald Editor ; Krueger, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-95625-000-2 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Id - Approved no  
  Call Number Equine Behaviour @ team @ Serial 5899  
Permanent link to this record
 

 
Author Matzke, S.M.; Oubre, J.L.; Caranto, G.R.; Gentry, M.K.; Galbicka, G. openurl 
  Title Behavioral and immunological effects of exogenous butyrylcholinesterase in rhesus monkeys Type Journal Article
  Year 1999 Publication Pharmacology, Biochemistry, and Behavior Abbreviated Journal Pharmacol Biochem Behav  
  Volume 62 Issue 3 Pages 523-530  
  Keywords Animals; Antibody Formation/drug effects; Behavior, Animal/*drug effects; Butyrylcholinesterase/*immunology/pharmacokinetics/*pharmacology; Cognition/drug effects; Color Perception/drug effects; Conditioning, Operant/drug effects; Discrimination Learning/drug effects; Half-Life; Horses; Humans; Macaca mulatta; Male  
  Abstract Although conventional therapies prevent organophosphate (OP) lethality, laboratory animals exposed to such treatments typically display behavioral incapacitation. Pretreatment with purified exogenous human or equine serum butyrylcholinesterase (Eq-BuChE), conversely, has effectively prevented OP lethality in rats and rhesus monkeys, without producing the adverse side effects associated with conventional treatments. In monkeys, however, using a commercial preparation of Eq-BuChE has been reported to incapacitate responding. In the present study, repeated administration of commercially prepared Eq-BuChE had no systematic effect on behavior in rhesus monkeys as measured by a six-item serial probe recognition task, despite 7- to 18-fold increases in baseline BuChE levels in blood. Antibody production induced by the enzyme was slight after the first injection and more pronounced following the second injection. The lack of behavioral effects, the relatively long in vivo half-life, and the previously demonstrated efficacy of BuChE as a biological scavenger for highly toxic OPs make BuChE potentially more effective than current treatment regimens for OP toxicity.  
  Address Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-3057 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:10080246 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4064  
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B. url  openurl
  Title The molecular genetics of red and green color vision in mammals Type Journal Article
  Year 1999 Publication Genetics Abbreviated Journal Genetics  
  Volume 153 Issue 2 Pages 919-932  
  Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection  
  Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).  
  Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:10511567 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4063  
Permanent link to this record
 

 
Author Lonon, A.M.; Zentall, T.R. openurl 
  Title Transfer of value from S+ to S- in simultaneous discriminations in humans Type Journal Article
  Year 1999 Publication The American journal of psychology Abbreviated Journal Am J Psychol  
  Volume 112 Issue 1 Pages 21-39  
  Keywords Adolescent; Adult; Animals; Color Perception; Columbidae; Conditioning, Classical; *Discrimination Learning; Female; Humans; Male; Middle Aged; *Motivation; Orientation; Pattern Recognition, Visual; Psychomotor Performance; Reaction Time; *Transfer (Psychology)  
  Abstract When animals learn a simultaneous discrimination, some of the value of the positive stimulus (S+) appears to transfer to the negative stimulus (S-). The present experiments demonstrate that such value transfer can also be found in humans. In Experiment 1 humans were trained on 2 simple simultaneous discriminations, the first between a highly positive stimulus, A (1,000 points); and a negative stimulus, B (0 points); and the second between a less positive stimulus, C (100 points); and a negative stimulus, D (0 points). On test trials, most participants preferred B over D. In Experiments 2 and 3 the value of the 2 original discriminations was equated in training (A[100]B[0] and C[100]D[0]). In Experiment 2 the values of the positive stimuli were then altered (A[1,000]C[0]); again, most participants preferred B over D. In Experiment 3, however, when the values of B and D were altered (B[1,000]D[0]), participants were indifferent to A and C. Thus, the mechanism that underlies value transfer in humans appears to be related to Pavlovian second-order conditioning. Similar mechanisms may be involved in assimilation processes in social contexts.  
  Address University of Kentucky, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9556 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:10696277 Approved no  
  Call Number refbase @ user @ Serial 249  
Permanent link to this record
 

 
Author Griffin, B. openurl 
  Title The use of fecal markers to facilitate sample collection in group-housed cats Type Journal Article
  Year 2002 Publication Contemporary Topics in Laboratory Animal Science / American Association for Laboratory Animal Science Abbreviated Journal Contemp Top Lab Anim Sci  
  Volume 41 Issue 2 Pages 51-56  
  Keywords Animals; Behavior, Animal; Biological Markers/*analysis; Cats/*physiology/psychology; Diet/veterinary; Feces/*chemistry; Food Coloring Agents/analysis; Housing, Animal; Individuality; Plastics/analysis; Specimen Handling/methods/*veterinary  
  Abstract The provision of proper social housing is a priority when designing an experiment using domestic cats as laboratory animals. When animals are group-housed, studies requiring analysis of stool samples from individual subjects pose difficulty in sample collection and identification. In this study, commercially available concentrated food colorings (known as bakers pastes) were used as fecal markers in group-housed cats. Cats readily consumed 0.5 ml of bakers paste food coloring once daily in canned cat food. Colorings served as fecal markers by imparting a distinct color to each cat s feces, allowing identification in the litter box. In addition, colored glitter (1/8 teaspoon in canned food) was fed to cats and found to be a reliable fecal marker. Long-term feeding of colorings and glitter was found to be safe and effective at yielding readily identifiable stools.  
  Address Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Alabama 36841, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1060-0558 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:11958604 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4165  
Permanent link to this record
 

 
Author Katz, M.; Lachlan, R.F. doi  openurl
  Title Social learning of food types in zebra finches (Taenopygia guttata) is directed by demonstrator sex and feeding activity Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 1 Pages 11-16  
  Keywords Animals; Color; Diet; *Feeding Behavior; Female; *Learning; Male; Sex Factors; *Social Behavior; *Songbirds  
  Abstract In this study we examined how social learning of feeding preferences by zebra finches was affected by the identity of different demonstrators. We presented adult zebra finches with two demonstrators, one male and one female, that exhibited different food choices, and we recorded their subsequent preference when given a choice between the two food types. Previously it was found that young zebra finches' patterns of social learning are affected by the sex of the individual demonstrating a feeding behaviour. This result could be explained by the lack of exposure these animals had to the opposite sex, or by their mating status. Therefore, we investigated the social learning preferences of adult mated zebra finches. We found the same pattern of directed social learning of a different type of feeding behaviour (food colour): female zebra finches preferred the colour of food eaten by male demonstrators, whereas male zebra finches showed little evidence of any preference for the colour of food eaten by female demonstrators. Furthermore, we found that female observers' preferences were biased by demonstrators' relative feeding activity: the female demonstrator was only ever preferred if it ate less than its male counterpart.  
  Address Institute of Evolutionary and Ecological Science, University of Leiden, Kaiserstraat 63, 2311GP, Leiden, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:12658531 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2585  
Permanent link to this record
 

 
Author Hauber, M.E.; Sherman, P.W. doi  openurl
  Title Designing and interpreting experimental tests of self-referent phenotype matching Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 1 Pages 69-71  
  Keywords Animals; Birds; Body Constitution; Color; Humans; Pedigree; *Perception; Phenotype; *Recognition (Psychology); Research Design; *Self Psychology  
  Abstract  
  Address Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-2702, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:12658536 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2580  
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J. doi  openurl
  Title Photopigment basis for dichromatic color vision in the horse Type Journal Article
  Year 2001 Publication Journal of Vision Abbreviated Journal J Vis  
  Volume 1 Issue 2 Pages 80-87  
  Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology  
  Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.  
  Address Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7362 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:12678603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4060  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print