toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krützen, M.; Mann, J.; Heithaus, M.R.; Connor, R.C.; Bejder, L.; Sherwin, W.B. url  openurl
  Title Cultural transmission of tool use in bottlenose dolphins Type Journal Article
  Year 2005 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 102 Issue 25 Pages 8939-8943  
  Keywords  
  Abstract In Shark Bay, wild bottlenose dolphins (Tursiops sp.) apparently use marine sponges as foraging tools. We demonstrate that genetic and ecological explanations for this behavior are inadequate; thus, “sponging” classifies as the first case of an existing material culture in a marine mammal species. Using mitochondrial DNA analyses, we show that sponging shows an almost exclusive vertical social transmission within a single matriline from mother to female offspring. Moreover, significant genetic relatedness among all adult spongers at the nuclear level indicates very recent coancestry, suggesting that all spongers are descendents of one recent “Sponging Eve.” Unlike in apes, tool use in this population is almost exclusively limited to a single matriline that is part of a large albeit open social network of frequently interacting individuals, adding a new dimension to charting cultural phenomena among animals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes 10.1073/pnas.0500232102 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5916  
Permanent link to this record
 

 
Author Touma, C.; Palme, R. doi  openurl
  Title Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 54-74  
  Keywords Animals; Birds/*metabolism; Circadian Rhythm; Feces/*chemistry; Glucocorticoids/*analysis; Mammals/*metabolism; Reproducibility of Results; Seasons; Sex Factors  
  Abstract In recent years, the noninvasive monitoring of steroid hormone metabolites in feces of mammals and droppings of birds has become an increasingly popular technique. It offers several advantages and has been applied to a variety of species under various settings. However, using this technique to reliably assess an animal's adrenocortical activity is not that simple and straightforward to apply. Because clear differences regarding the metabolism and excretion of glucocorticoid metabolites (GCMs) exist, a careful validation for each species and sex investigated is obligatory. In this review, general analytical issues regarding sample storage, extraction procedures, and immunoassays are briefly discussed, but the main focus lies on experiments and recommendations addressing the validation of fecal GCM measurements in mammals and birds. The crucial importance of scrutinizing the physiological and biological validity of fecal GCM analyses in a given species is stressed. In particular, the relevance of the technique to detect biologically meaningful alterations in adrenocortical activity must be shown. Furthermore, significant effects of the animals' sex, the time of day, season, and different life history stages are discussed, bringing about the necessity to seriously consider possible sex differences as well as diurnal and seasonal variations. Thus, comprehensive information on the animals' biology and stress physiology should be carefully taken into account. Together with an extensive physiological and biological validation, this will ensure that the measurement of fecal GCMs can be used as a powerful tool to assess adrenocortical activity in diverse investigations on laboratory, companion, farm, zoo, and wild animals.  
  Address Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Kraepelinstrasse 2-10, D-80804 Munich, Germany. touma@mpipsykl.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:16055843 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4073  
Permanent link to this record
 

 
Author Palme, R. doi  openurl
  Title Measuring fecal steroids: guidelines for practical application Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1046 Issue Pages 75-80  
  Keywords Animals; Feces/*chemistry; Immunoassay/methods; Reproducibility of Results; Specimen Handling/methods; Steroids/*analysis  
  Abstract During the past 20 years, measuring steroid hormone metabolites in fecal samples has become a widely appreciated technique, because it has proved to be a powerful, noninvasive tool that provides important information about an animal's endocrine status (adrenocortical activity and reproductive status). However, although sampling is relatively easy to perform and free of feedback, a careful consideration of various factors is necessary to achieve proper results that lead to sound conclusions. This article aims to provide guidelines for an adequate application of these techniques. It is meant as a checklist that addresses the main topics of concern, such as sample collection and storage, time delay extraction procedures, assay selection and validation, biological relevance, and some confounding factors. These issues are discussed briefly here and in more detail in other recent articles.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria. Rupert.Palme@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:16055844 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4081  
Permanent link to this record
 

 
Author Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Mostl, E. doi  openurl
  Title Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples Type Journal Article
  Year 2005 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1040 Issue Pages 162-171  
  Keywords Adrenal Glands/chemistry/metabolism; Animals; Birds; Catecholamines/analysis/chemistry/*metabolism; Feces/*chemistry; Glucocorticoids/analysis/chemistry/*metabolism; Hormones/analysis/metabolism; Mammals; Species Specificity; Stress/*metabolism  
  Abstract A multitude of endocrine mechanisms are involved in coping with challenges. Front-line hormones to overcome stressful situations are glucocorticoids (GCs) and catecholamines (CAs). These hormones are usually determined in plasma samples as parameters of adrenal activity and thus of disturbance. GCs (and CAs) are extensively metabolized and excreted afterwards. Therefore, the concentration of GCs (or their metabolites) can be measured in various body fluids or excreta. Above all, fecal samples offer the advantages of easy collection and a feedback-free sampling procedure. However, large differences exist among species regarding the route and time course of excretion, as well as the types of metabolites formed. Based on information gained from radiometabolism studies (reviewed in this paper), we recently developed and successfully validated different enzyme immunoassays that enable the noninvasive measurement of groups of cortisol or corticosterone metabolites in animal feces. The determination of these metabolites in fecal samples can be used as a powerful tool to monitor GC production in various species of domestic, wildlife, and laboratory animals.  
  Address Institute of Biochemistry, Department of Natural Sciences, University of Veterinary Medicine, Vienna, Austria. rupert.palme@vu-wien.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:15891021 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4083  
Permanent link to this record
 

 
Author Krama, T. [1]; Krams, I. [2] doi  openurl
  Title Cost of mobbing call to breeding pied flycatcher, Ficedula hypoleuca Type Journal Article
  Year 2005 Publication Behavioral Ecology Abbreviated Journal Behav. Ecol.  
  Volume 16 Issue Pages 37-40  
  Keywords ntipredator behavior, Ficedula hypoleuca, mobbing calls, mobbing costs, pied flycatcher.  
  Abstract Mobbing signals advertise the location of a stalking predator to all prey in an area and recruit them into the inspection aggregation. Such behavior usually causes the predator to move to another area. However, mobbing calls could be eavesdropped by other predators. Because the predation cost of mobbing calls is poorly known, we investigated whether the vocalizations of the mobbing pied flycatcher, Ficedula hypoleuca, a small hole nesting passerine, increase the risk of nest predation. We used mobbing calls of pied flycatchers to examine if they could lure predators such as the marten, Martes martes. This predator usually hunts by night and may locate its mobbing prey while resting nearby during the day. Within each of 56 experimental plots, from the top of one nest-box we played back mobbing sounds of pied flycatchers, whereas blank tapes were played from the top of another nest-box. The trials with mobbing calls were carried out before sunset. We put pieces of recently abandoned nests of pied flycatchers and a quail, Coturnix coturnix, egg into each of the nest-boxes. Nest-boxes with playbacks of mobbing calls were depredated by martens significantly more than were nest-boxes with blank tapes. The results of the present study indicate that repeated conspicuous mobbing calls may carry a significant cost for birds during the breeding season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4092  
Permanent link to this record
 

 
Author Smith, D.G.; Pearson, R.A. doi  openurl
  Title A review of the factors affecting the survival of donkeys in semi-arid regions of sub-Saharan Africa Type Journal Article
  Year 2005 Publication Tropical Animal Health and Production Abbreviated Journal Trop Anim Health Prod  
  Volume 37 Suppl 1 Issue Pages 1-19  
  Keywords Africa South of the Sahara; Animal Nutrition Physiology; Animals; Behavior, Animal; Cattle; Equidae/growth & development/*physiology; Socioeconomic Factors  
  Abstract The large fluctuations seen in cattle populations during periods of drought in sub-Saharan Africa are not evident in the donkey population. Donkeys appear to have a survival advantage over cattle that is increasingly recognized by smallholder farmers in their selection of working animals. The donkey's survival advantages arise from both socioeconomic and biological factors. Socioeconomic factors include the maintenance of a low sustainable population of donkeys owing to their single-purpose role and their low social status. Also, because donkeys are not usually used as a meat animal and can provide a regular income as a working animal, they are not slaughtered in response to drought, as are cattle. Donkeys have a range of physiological and behavioural adaptations that individually provide small survival advantages over cattle but collectively may make a large difference to whether or not they survive drought. Donkeys have lower maintenance costs as a result of their size and spend less energy while foraging for food; lower energy costs result in a lower dry matter intake (DMI) requirement. In donkeys, low-quality diets are digested almost as efficiently as in ruminants and, because of a highly selective feeding strategy, the quality of diet obtained by donkeys in a given pasture is higher than that obtained by cattle. Lower energy costs of walking, longer foraging times per day and ability to tolerate thirst may allow donkeys to access more remote, under-utilized sources of forage that are inaccessible to cattle on rangeland. As donkeys become a more popular choice of working animal for farmers, specific management practices need to be devised that allow donkeys to fully maximize their natural survival advantages.  
  Address Department of Agriculture and Forestry, University of Aberdeen, Aberdeen, AB24 3FX, Scotland, UK. d.g.smith@abdn.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-4747 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:16335068 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4231  
Permanent link to this record
 

 
Author König, H.E.; Wissdorf, H.; Probst, A.; Macher, R.; Voß, S.; Polsterer, E. url  openurl
  Title Considerations about the function of the mimic muscles and the vomeronasal organ of horses during the Flehmen reaction Type Journal Article
  Year 2005 Publication Pferdeheilkunde Abbreviated Journal  
  Volume 21 Issue 4 Pages 297-300  
  Keywords Anatomy; Behaviour; Flehmen reaction; Horse; Vomeronasal organ  
  Abstract Additional to the olfactory epithelium, the equine vomeronasal organ serves to the perception of odorous substances and specially for pheromones. In a middle-size horse this organ has an extension in length from an imaginary transverse plane about 10 cm caudally the nostrils to a transverse plane through the middle of the second premolar tooth. During the Flehmen reaction the levator labii superior, nasolabial, caninus and lateralis nasi muscles contract. The upper lip and the tip of the nose are lifted. The opening of the nostrils is narrowed, caused by the convergence of the plate and horn of the alar cartilage. In this manner in case of Flehmen reaction air is directly conducted towards the opening of the vomeronasal organ into the nasal cavity during inspiration. During the “Flehmen” horses assume a characteristic posture.  
  Address Department für Pathobiologie (Institut für Anatomie), Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Export Date: 21 October 2008; Source: Scopus Approved yes  
  Call Number Equine Behaviour @ team @ Serial 4554  
Permanent link to this record
 

 
Author Deutsche Reiterliche Vereinigung e.V. (FN); Miesner,Susanne; Putz, Michael; Plewa ,Martin isbn  openurl
  Title Richtlinien für Reiten und Fahren – Band 1 Type Book Whole
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Grundausbildung für Reiter und Pferd  
  Abstract Dieses Standardwerk vermittelt das Grundwissen für die Ausbildung des Reiters und des Pferdes nach den Grundsätzen der klassischen Reitkunst. Die hier beschriebene Grundausbildung dient dabei nicht ausschließlich der Vorbereitung für Turniere und Leistungsprüfungen, sie soll vielmehr die Voraussetzungen für alle pferdesportlichen Betätigungen schaffen.  
  Address  
  Corporate Author Thesis  
  Publisher Fn-Verlag Place of Publication Warendorf Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-88542-262-4 Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4400  
Permanent link to this record
 

 
Author Bigiani, A.; Mucignat-Caretta, C.; Montani, G.; Tirindelli, R. doi  openurl
  Title Pheromone reception in mammals Type Journal Article
  Year 2005 Publication Reviews of Physiology, Biochemistry and Pharmacology Abbreviated Journal  
  Volume 154 Issue Pages 1-35  
  Keywords  
  Abstract Pheromonal communication is the most convenient way to transfer information regarding gender and social status in animals of the same species with the holistic goal of sustaining reproduction. This type of information exchange is based on pheromones, molecules often chemically unrelated, that are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. So profound is the relevance of pheromones over the evolutionary process that a specific peripheral organ devoted to their recognition, namely the vomeronasal organ of Jacobson, and a related central pathway arose in most vertebrate species. Although the vomeronasal system is well developed in reptiles and amphibians, most mammals strongly rely on pheromonal communication. Humans use pheromones too; evidence on the existence of a specialized organ for their detection, however, is very elusive indeed. In the present review, we will focus our attention on the behavioral, physiological, and molecular aspects of pheromone detection in mammals. We will discuss the responses to pheromonal stimulation in different animal species, emphasizing the complicacy of this type of communication. In the light of the most recent results, we will also discuss the complex organization of the transduction molecules that underlie pheromone detection and signal transmission from vomeronasal neurons to the higher centers of the brain. Communication is a primary feature of living organisms, allowing the coordination of different behavioral paradigms among individuals. Communication has evolved through a variety of different strategies, and each species refined its own preferred communication medium. From a phylogenetic point of view, the most widespread and ancient way of communication is through chemical signals named pheromones: it occurs in all taxa, from prokaryotes to eukaryotes. The release of specific pheromones into the environment is a sensitive and definite way to send messages to other members of the same species. Therefore, the action of an organism can alter the behavior of another organism, thereby increasing the fitness of either or both. Albeit slow in transmission and not easily modulated, pheromones can travel around objects in the dark and over long distances. In addition, they are emitted when necessary and their biosynthesis is usually economic. In essence, they represent the most efficient tool to refine the pattern of social behaviors and reproductive strategies. © Springer-Verlag 2005.  
  Address Università di Parma, Dipartimento di Neuroscienze, Sezione di Fisiologia, Via Volturno 39, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4570  
Permanent link to this record
 

 
Author Apfelbach, R.; Blanchard, C.D.; Blanchard, R.J.; Hayes, R.A.; McGregor, I.S. doi  openurl
  Title The effects of predator odors in mammalian prey species: A review of field and laboratory studies Type Journal Article
  Year 2005 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal  
  Volume 29 Issue 8 Pages 1123-1144  
  Keywords Behavioral suppression; Defensive behavior; Endocrine effects; Neural effects; Predator odor; Small mammals  
  Abstract Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. © 2005 Elsevier Ltd. All rights reserved.  
  Address School of Psychology, University of Sydney, Sydney, NSW 2006, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4565  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print