|   | 
Details
   web
Records
Author Lyda, R.O.; Hall, J.R.; Kirkpatrick, J.F.
Title A comparison of Freund's Complete and Freund's Modified Adjuvants used with a contraceptive vaccine in wild horses (Equus caballus) Type Journal Article
Year 2005 Publication Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians Abbreviated Journal J Zoo Wildl Med
Volume 36 Issue 4 Pages 610-616
Keywords (up) Animals; Antibody Formation; Contraception, Immunologic/*veterinary; Estrus/drug effects; Female; Freund's Adjuvant/administration & dosage/adverse effects/*immunology; Horses/immunology/*physiology; *Vaccines, Contraceptive; Zona Pellucida/*immunology
Abstract Fifteen captive wild mares (Equus caballus) were treated with porcine zona pellucida contraceptive vaccine and either Freund's Complete Adjuvant (n = 7) or Freund's Modified Adjuvant (n = 8). All mares received a booster inoculation of porcine zona pellucida plus Freund's Incomplete Adjuvant a month later. Anti-porcine zona pellucida antibodies were measured over 10 mo following the initial inoculation. There were no significant differences in antibody titers at any point during the 10 mo, and seven of the eight mares in the Freund's Modified Adjuvant group were above the 60% level at the end of the study, which is considered to be the contraceptive threshold for horses. There were no significant differences in titers between pregnant and nonpregnant horses, nor was there a significant correlation between age and titers. One local injection site reaction occurred after booster treatment with Freund's Incomplete Adjuvant, and 11 healthy foals were born during the course of the study. These data suggest that Freund's Modified Adjuvant is an acceptable substitute for Freund's Complete Adjuvant in certain free-ranging and captive wildlife species.
Address Science and Conservation Center, 2100 South Shiloh Road, Billings, Montana 59106, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1042-7260 ISBN Medium
Area Expedition Conference
Notes PMID:17312717 Approved no
Call Number refbase @ user @ Serial 139
Permanent link to this record
 

 
Author Alexander, F.
Title The effect of some anti-diarrhoeal drugs on intestinal transit and faecal excretion of water and electrolytes in the horse Type Journal Article
Year 1978 Publication Equine veterinary journal Abbreviated Journal Equine Vet J
Volume 10 Issue 4 Pages 229-234
Keywords (up) Animals; Antidiarrheals/*pharmacology; Atropine/pharmacology; Electrolytes/*analysis/urine; Feces/*analysis; Gastrointestinal Motility/*drug effects; Horses/*metabolism/physiology; Loperamide/pharmacology; Male; Meperidine/pharmacology; Morphine/pharmacology; Opium/pharmacology; Water/*analysis
Abstract The effect of morphine, Tinct. opii, loperamide, pethidine and atropine on intestinal transit and the faecal and urinary excretion of water and electrolytes was studied in ponies. The rate of passage of a particulate marker was slowed by morphine, hastened then slowed by loperamide and Tinct. opii, and hastened by atropine. The liquid marker was slowed by Tinct. opii and hastened then slowed by the other drugs. Only loperamide decreased the faecal sodium excretion. This drug also decreased faecal water and weight; it appeared worthy of clinical trial in diarrhoea. Tinct. opii decreased by morphine, pethidine and atropine increased faecal water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:738263 Approved no
Call Number refbase @ user @ Serial 110
Permanent link to this record
 

 
Author Tumova, B.
Title Equine influenza--a segment in influenza virus ecology Type Journal Article
Year 1980 Publication Comparative Immunology, Microbiology and Infectious Diseases Abbreviated Journal Comp Immunol Microbiol Infect Dis
Volume 3 Issue 1-2 Pages 45-59
Keywords (up) Animals; Antigens, Viral; Genes, Viral; Horse Diseases/*microbiology; Horses; Influenza A virus/immunology/pathogenicity/*physiology; Orthomyxoviridae Infections/microbiology/*veterinary; Viral Proteins/analysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0147-9571 ISBN Medium
Area Expedition Conference
Notes PMID:6258849 Approved no
Call Number Equine Behaviour @ team @ Serial 2691
Permanent link to this record
 

 
Author Nowlan, S.S.; Deibel, R.H.
Title Group Q streptococci. I. Ecology, serology, physiology, and relationship to established enterococci Type Journal Article
Year 1967 Publication Journal of Bacteriology Abbreviated Journal J Bacteriol
Volume 94 Issue 2 Pages 291-296
Keywords (up) Animals; Antigens/analysis; Cattle; Dogs; Enterococcus faecalis/metabolism; Feces/microbiology; Horses; Humans; Poultry; Precipitin Tests; Rabbits; Sheep; *Streptococcus/immunology/isolation & purification/metabolism; Swine
Abstract The group Q streptococci possess unique serological and physiological characteristics which differentiate them from established enterococci. The group Q antigen was not demonstrable in all strains; however, all possessed the group D antigen. All group Q strains were physiologically similar regardless of whether or not they possessed the group Q antigen. These strains differed from the established enterococcal species, as they neither hydrolyzed arginine nor initiated growth in 1.0% methylene blue-milk. They also differed radically in the fermentation of various carbohydrates, especially the polyhydric sugar alcohols. The results indicate that the group Q streptococci constitute a unique taxonomic entity; the species designation Streptococcus avium sp. n. is suggested, owing to their characteristic occurrence in chicken fecal specimens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9193 ISBN Medium
Area Expedition Conference
Notes PMID:4962699 Approved no
Call Number Equine Behaviour @ team @ Serial 2746
Permanent link to this record
 

 
Author Polverini, E.; Cugini, G.; Annoni, F.; Abbruzzetti, S.; Viappiani, C.; Gensch, T.
Title Molten globule formation in apomyoglobin monitored by the fluorescent probe Nile Red Type Journal Article
Year 2006 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 45 Issue 16 Pages 5111-5121
Keywords (up) Animals; Apoproteins/*chemistry/*metabolism; Binding Sites; Computer Simulation; Fluorescent Dyes/analysis; Horses; Hydrogen-Ion Concentration; Models, Molecular; Myoglobin/*chemistry/*metabolism; Oxazines/*analysis/chemistry; Protein Binding; Protein Folding; Protein Structure, Tertiary
Abstract The interaction of nile red (NR) with apomyoglobin (ApoMb) in the native (pH 7) and molten globule (pH 4) states was investigated using experimental and computational methods. NR binds to hydrophobic locations in ApoMb with higher affinity (K(d) = 25 +/- 5 microM) in the native state than in the molten globule state (K(d) = 52 +/- 5 microM). In the molten globule state, NR is located in a more hydrophobic environment. The dye does not bind to the holoprotein, suggesting that the binding site is located at the heme pocket. In addition to monitoring steady-state properties, the fluorescence emission of NR is capable of tracking submillisecond, time-resolved structural rearrangements of the protein, induced by a nanosecond pH jump. Molecular dynamics simulations were run on ApoMb at neutral pH and at pH 4. The structure obtained for the molten globule state is consistent with the experimentally available structural data. The docking of NR with the crystal structure shows that the ligand binds into the binding pocket of the heme group, with an orientation bringing the planar ring system of NR to overlap with the position of two of the heme porphyrin rings in Mb. The docking of NR with the ApoMb structure at pH 4 shows that the dye binds to the heme pocket with a slightly less favorable binding energy, in keeping with the experimental K(d) value. Under these conditions, NR is positioned in a different orientation, reaching a more hydrophobic environment in agreement with the spectroscopic data.
Address Dipartimento di Fisica, Universita degli Studi di Parma, Viale G. P. Usberti 7/A, 43100 Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:16618100 Approved no
Call Number Equine Behaviour @ team @ Serial 3763
Permanent link to this record
 

 
Author Uzawa, T.; Akiyama, S.; Kimura, T.; Takahashi, S.; Ishimori, K.; Morishima, I.; Fujisawa, T.
Title Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of alpha-helical content and compactness Type Journal Article
Year 2004 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 101 Issue 5 Pages 1171-1176
Keywords (up) Animals; Apoproteins/*chemistry; Circular Dichroism; Cytochromes c/chemistry; Horses; Myoglobin/*chemistry; *Protein Folding; *Protein Structure, Secondary; Scattering, Radiation
Abstract The characterization of protein folding dynamics in terms of secondary and tertiary structures is important in elucidating the features of intraprotein interactions that lead to specific folded structures. Apomyoglobin (apoMb), possessing seven helices termed A-E, G, and H in the native state, has a folding intermediate composed of the A, G, and H helices, whose formation in the submillisecond time domain has not been clearly characterized. In this study, we used a rapid-mixing device combined with circular dichroism and small-angle x-ray scattering to observe the submillisecond folding dynamics of apoMb in terms of helical content (f(H)) and radius of gyration (R(g)), respectively. The folding of apoMb from the acid-unfolded state at pH 2.2 was initiated by a pH jump to 6.0. A significant collapse, corresponding to approximately 50% of the overall change in R(g) from the unfolded to native conformation, was observed within 300 micros after the pH jump. The collapsed intermediate has a f(H) of 33% and a globular shape that involves >80% of all its atoms. Subsequently, a stepwise helix formation was detected, which was interpreted to be associated with a conformational search for the correct tertiary contacts. The characterized folding dynamics of apoMb indicates the importance of the initial collapse event, which is suggested to facilitate the subsequent conformational search and the helix formation leading to the native structure.
Address Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:14711991 Approved no
Call Number Equine Behaviour @ team @ Serial 3779
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T.
Title Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 41 Issue 21 Pages 6595-6604
Keywords (up) Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales
Abstract The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:12022863 Approved no
Call Number Equine Behaviour @ team @ Serial 3785
Permanent link to this record
 

 
Author Ballew, R.M.; Sabelko, J.; Gruebele, M.
Title Direct observation of fast protein folding: the initial collapse of apomyoglobin Type Journal Article
Year 1996 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 93 Issue 12 Pages 5759-5764
Keywords (up) Animals; Apoproteins/*chemistry; Circular Dichroism; Horses; Kinetics; Muscle, Skeletal/chemistry; Myoglobin/*chemistry; *Protein Folding; Spectrometry, Fluorescence; Spectrophotometry, Infrared; Temperature
Abstract The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.
Address School of Chemical Sciences and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, 61801, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:8650166 Approved no
Call Number Equine Behaviour @ team @ Serial 3798
Permanent link to this record
 

 
Author Gulotta, M.; Gilmanshin, R.; Buscher, T.C.; Callender, R.H.; Dyer, R.B.
Title Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape Type Journal Article
Year 2001 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 40 Issue 17 Pages 5137-5143
Keywords (up) Animals; Apoproteins/*chemistry; Computer Simulation; Horses; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; *Protein Folding; Protein Structure, Secondary; Protein Structure, Tertiary; Spectrometry, Fluorescence/instrumentation/methods; Thermodynamics; Tryptophan/chemistry
Abstract An acid-destabilized form of apomyoglobin, the so-called E state, consists of a set of heterogeneous structures that are all characterized by a stable hydrophobic core composed of 30-40 residues at the intersection of the A, G, and H helices of the protein, with little other secondary structure and no other tertiary structure. Relaxation kinetics studies were carried out to characterize the dynamics of core melting and formation in this protein. The unfolding and/or refolding response is induced by a laser-induced temperature jump between the folded and unfolded forms of E, and structural changes are monitored using the infrared amide I' absorbance at 1648-1651 cm(-1) that reports on the formation of solvent-protected, native-like helix in the core and by fluorescence emission changes from apomyoglobin's Trp14, a measure of burial of the indole group of this residue. The fluorescence kinetics data are monoexponential with a relaxation time of 14 micros. However, infrared kinetics data are best fit to a biexponential function with relaxation times of 14 and 59 micros. These relaxation times are very fast, close to the limits placed on folding reactions by diffusion. The 14 micros relaxation time is weakly temperature dependent and thus represents a pathway that is energetically downhill. The appearance of this relaxation time in both the fluorescence and infrared measurements indicates that this folding event proceeds by a concomitant formation of compact secondary and tertiary structures. The 59 micros relaxation time is much more strongly temperature dependent and has no fluorescence counterpart, indicating an activated process with a large energy barrier wherein nonspecific hydrophobic interactions between helix A and the G and H helices cause some helix burial but Trp14 remains solvent exposed. These results are best fit by a multiple-pathway kinetic model when U collapses to form the various folded core structures of E. Thus, the results suggest very robust dynamics for core formation involving multiple folding pathways and provide significant insight into the primary processes of protein folding.
Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:11318635 Approved no
Call Number Equine Behaviour @ team @ Serial 3789
Permanent link to this record
 

 
Author Gulotta, M.; Rogatsky, E.; Callender, R.H.; Dyer, R.B.
Title Primary folding dynamics of sperm whale apomyoglobin: core formation Type Journal Article
Year 2003 Publication Biophysical Journal Abbreviated Journal Biophys J
Volume 84 Issue 3 Pages 1909-1918
Keywords (up) Animals; Apoproteins/*chemistry; Crystallography/*methods; Horses; Myocardium/chemistry; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Species Specificity; Structure-Activity Relationship; Temperature; Whales
Abstract The structure, thermodynamics, and kinetics of heat-induced unfolding of sperm whale apomyoglobin core formation have been studied. The most rudimentary core is formed at pH(*) 3.0 and up to 60 mM NaCl. Steady state for ultraviolet circular dichroism and fluorescence melting studies indicate that the core in this acid-destabilized state consists of a heterogeneous composition of structures of approximately 26 residues, two-thirds of the number involved for horse heart apomyoglobin under these conditions. Fluorescence temperature-jump relaxation studies show that there is only one process involved in Trp burial. This occurs in 20 micro s for a 7 degrees jump to 52 degrees C, which is close to the limits placed by diffusion on folding reactions. However, infrared temperature jump studies monitoring native helix burial are biexponential with times of 5 micro s and 56 micro s for a similar temperature jump. Both fluorescence and infrared fast phases are energetically favorable but the slow infrared absorbance phase is highly temperature-dependent, indicating a substantial enthalpic barrier for this process. The kinetics are best understood by a multiple-pathway kinetics model. The rapid phases likely represent direct burial of one or both of the Trp residues and parts of the G- and H-helices. We attribute the slow phase to burial and subsequent rearrangement of a misformed core or to a collapse having a high energy barrier wherein both Trps are solvent-exposed.
Address Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA. gulotta@aecom.yu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3495 ISBN Medium
Area Expedition Conference
Notes PMID:12609893 Approved no
Call Number Equine Behaviour @ team @ Serial 3783
Permanent link to this record