toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schwartz, B.L.; Colon, M.R.; Sanchez, I.C.; Rodriguez, I.A.; Evans, S. doi  openurl
  Title Single-trial learning of “what” and “who” information in a gorilla (Gorilla gorilla gorilla): implications for episodic memory Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 2 Pages 85-90  
  Keywords (down) Animals; Cognition; Gorilla gorilla/*psychology; *Learning; Male; *Memory; Perception; Reinforcement Schedule  
  Abstract Single-trial learning and long-term memory of “what” and “who” information were examined in an adult gorilla (Gorilla gorilla gorilla). We presented the gorilla with a to-be-remembered food item at the time of study. In Experiment 1, following a retention interval of either approximately 7 min or 24 h, the gorilla responded with one of five cards, each corresponding to a particular food. The gorilla was accurate on 70% of the short retention-interval trials and on 82% of the long retention-interval trials. In Experiment 2, the food stimulus was provided by one of two experimenters, each of whom was represented by a card. The gorilla identified the food (55% of the time) and the experimenter (82% of the time) on the short retention-interval trials. On the long retention-interval trials, the gorilla was accurate for the food (73%) and for the person (87%). The results are interpreted in light of theories of episodic memory.  
  Address Department of Psychology, Florida International University, University Park, Miami, FL 33199, USA. schwartb@fiu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12150040 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2604  
Permanent link to this record
 

 
Author Fricke, H.W. openurl 
  Title Individual partner recognition in fish: field studies on Amphiprion bicinctus Type Journal Article
  Year 1973 Publication Die Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 60 Issue 4 Pages 204-205  
  Keywords (down) Animals; Cognition; Fishes/*physiology; *Sexual Behavior, Animal  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4709357 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2798  
Permanent link to this record
 

 
Author Beran, M.J. doi  openurl
  Title Long-term retention of the differential values of Arabic numerals by chimpanzees (Pan troglodytes) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 2 Pages 86-92  
  Keywords (down) Animals; Cognition; Female; Language; Longitudinal Studies; Male; *Mathematics; *Mental Recall; Pan troglodytes/*psychology; *Retention (Psychology); *Semantics; Time Factors  
  Abstract As previously reported (Beran and Rumbaugh, 2001), two chimpanzees used a joystick to collect dots, one-at-a-time, on a computer monitor, and then ended a trial when the number of dots collected was equal to the Arabic numeral presented for the trial. Here, the chimpanzees were presented with the task again after an interval of 6 months and then again after an additional interval of 3.25 years. During each interval, the chimpanzees were not presented with the task, and this allowed an assessment of the extent to which both animals retained the values of each Arabic numeral. Despite lower performance at each retention interval compared to the original study, both chimpanzees performed above chance levels in collecting a quantity of dots equal to the target numeral, one chimpanzee for the numerals 1-7, and the second chimpanzee for the numerals 1-6. For the 3.25-year retention, errors were more dispersed around each target numeral than in the original study, but the chimpanzees' performances again appeared to be based on a continuous representation of magnitude rather than a discrete representation of number. These data provide an experimental demonstration of long-term retention of the differential values of Arabic numerals by chimpanzees.  
  Address Language Research Center, Georgia State University, 3401 Panthersville Road, Decatur, GA 30034, USA. mjberan@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15069607 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2533  
Permanent link to this record
 

 
Author Agrillo, C.; Dadda, M.; Bisazza, A. doi  openurl
  Title Quantity discrimination in female mosquitofish Type Journal Article
  Year 2007 Publication Animal cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 63-70  
  Keywords (down) Animals; Cognition; *Cyprinodontiformes; *Discrimination Learning; Female; Male; Mathematics; *Pattern Recognition, Visual  
  Abstract The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.  
  Address Department of General Psychology, University of Padova, via Venezia 8, 35131, Padova, Italy. christian.agrillo@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16868736 Approved no  
  Call Number refbase @ user @ Serial 339  
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V. openurl 
  Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
  Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 199 Issue Pt 1 Pages 201-209  
  Keywords (down) Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology  
  Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.  
  Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8576691 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2758  
Permanent link to this record
 

 
Author Bennett, A.T. openurl 
  Title Do animals have cognitive maps? Type Journal Article
  Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 199 Issue Pt 1 Pages 219-224  
  Keywords (down) Animals; Cognition/*physiology; Humans; Space Perception/*physiology; Visual Pathways  
  Abstract Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.  
  Address Department of Pure Mathematics, University of Adelaide, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8576693 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2756  
Permanent link to this record
 

 
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P. doi  openurl
  Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
  Year 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 778-781  
  Keywords (down) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.  
  Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306809 Approved no  
  Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Cognitive science: rank inferred by reason Type Journal Article
  Year 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 732-733  
  Keywords (down) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306792 Approved no  
  Call Number refbase @ user @ Serial 365  
Permanent link to this record
 

 
Author Hayashi, M. doi  openurl
  Title Stacking of blocks by chimpanzees: developmental processes and physical understanding Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 89-103  
  Keywords (down) Animals; Cognition/*physiology; Female; Male; Motor Skills/*physiology; Pan troglodytes/*physiology/*psychology  
  Abstract The stacking-block task has been used to assess cognitive development in both humans and chimpanzees. The present study reports three aspects of stacking behavior in chimpanzees: spontaneous development, acquisition process following training, and physical understanding assessed through a cylindrical-block task. Over 3 years of longitudinal observation of block manipulation, one of three infant chimpanzees spontaneously started to stack up cubic blocks at the age of 2 years and 7 months. The other two infants began stacking up blocks at 3 years and 1 month, although only after the introduction of training by a human tester who rewarded stacking behavior. Cylindrical blocks were then introduced to assess physical understanding in object-object combinations in three infant (aged 3-4) and three adult chimpanzees. The flat surfaces of cylinders are suitable for stacking, while the rounded surface is not. Block manipulation was described using sequential codes and analyzed focusing on failure, cause, and solution in the task. Three of the six subjects (one infant and two adults) stacked up cylindrical blocks efficiently: frequently changing the cylinders' orientation without contacting the round side to other blocks. Rich experience in stacking cubes may facilitate subjects' stacking of novel, cylindrical shapes from the beginning. The other three subjects were less efficient in stacking cylinders and used variable strategies to achieve the goal. Nevertheless, they began to learn the effective way of stacking over the course of testing, after about 15 sessions (75 trials).  
  Address JSPS Research Fellow, Section of Language and Intelligence, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, Aichi, 484-8506, Japan. misato@pri.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909233 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2451  
Permanent link to this record
 

 
Author Bshary, R.; Wickler, W.; Fricke, H. doi  openurl
  Title Fish cognition: a primate's eye view Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 1 Pages 1-13  
  Keywords (down) Animals; Cognition/*physiology; Evolution; Fishes/*physiology; Intelligence; Learning; Primates/*physiology; Social Behavior  
  Abstract We provide selected examples from the fish literature of phenomena found in fish that are currently being examined in discussions of cognitive abilities and evolution of neocortex size in primates. In the context of social intelligence, we looked at living in individualized groups and corresponding social strategies, social learning and tradition, and co-operative hunting. Regarding environmental intelligence, we searched for examples concerning special foraging skills, tool use, cognitive maps, memory, anti-predator behaviour, and the manipulation of the environment. Most phenomena of interest for primatologists are found in fish as well. We therefore conclude that more detailed studies on decision rules and mechanisms are necessary to test for differences between the cognitive abilities of primates and other taxa. Cognitive research can benefit from future fish studies in three ways: first, as fish are highly variable in their ecology, they can be used to determine the specific ecological factors that select for the evolution of specific cognitive abilities. Second, for the same reason they can be used to investigate the link between cognitive abilities and the enlargement of specific brain areas. Third, decision rules used by fish could be used as 'null-hypotheses' for primatologists looking at how monkeys might make their decisions. Finally, we propose a variety of fish species that we think are most promising as study objects.  
  Address University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK. rb286@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11957395 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2617  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print